
12
Strain

12.1 Introduction

Deforming a circle into an ellipse clearly demonstrates that the orientations and lengths
of lines and the angles between pairs of lines generally change. With suitable material the
stretch and angle of shear associated with a line may be determined from measurements
made on deformed objects whose original shape or size are known. It may then be possible
to determine something of the shape, size and orientation of the strain ellipse. For exam-
ple, measurement of the deformed shape of an originally spherical oolite yields the shape
of the ellipse and its orientation directly. This chapter deals with some additional tech-
niques for extracting two-dimensional strain information from deformed rocks. Many
more examples, including some excellent photographs, can be found in the book by Ram-
say and Huber (1983). Lisle (1994) gives a good review of more recent developments.

Before describing the full analytical method it will be useful to show that in some
situations the shape and orientation of the strain ellipse can be obtained simply and
directly using purely graphical means.

12.2 Deformed grains

The center points of individual grains in a section through a rock form a grid. In terms of
the center-to-center distances the possible geometrical patterns have two end-members. If
the distribution is random, the minimum distance between centers is zero and such pattern
exhibits clustering. If all the grains are perfectly uniform circles and are closely packed
then all distances between centers will be equal in the undeformed state (Fig. 12.1a),
and thus are radii of a circle. After a homogeneous deformation these are systematically
altered; they are now radii of an ellipse (Fig. 12.1b). Rocks commonly display patterns
between these two and thus show degrees of anticlustering.

If the grain centers in the undeformed rock have a pronounced degree of anticlustering
and the pattern is isotropic, that is, the spacing in all directions is the same, then the
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12.2 Deformed grains 303

shape and orientation of the strain ellipse can be recovered from the deformed grid (Fry,
1979a; 1979b; Hanna & Fry, 1979; also Ramsay & Huber, 1983, p. 111–113; Simpson,
1988, p. 352). The analysis is usually performed on the tracing of a photomicrograph.
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Figure 12.1 Center-to-center distances: (a) before strain; (b) after strain.

Problem

• From a section of deformed grains, determine the shape and orientation of the strain
ellipse.

Construction

1. Plot the centers of all individual grains, numbering each (Fig. 12.2a).
2. On an overlay sheet establish a reference mark representing the coordinate origin and

position it over center No. 1. Mark all the other center points on this sheet.
3. Without rotating the overlay, translate the reference mark to center No. 2 and again

mark all the other centers (Fig. 12.2b). Repeat this procedure for all grain centers.
4. After a few of these steps a vacancy about the reference mark should begin to take

shape. Then grain centers at significantly greater distances need not be marked and
this speeds the work considerably.

Result

• The vacancy with the reference mark at its center defines the shape but not size of
the strain ellipse and its orientation (Fig. 12.2c). Because we do not know the initial
center-to-center distances the magnitude of the principal stretches can not be obtained,
only their ratio.

Usually the recognizable pattern starts to emerge after about 25 points but, depending
on the strength of the initial anticlustering, up to several hundred points may be required
to adequately define the ellipse. If no such vacancy develops then the initial distribution
was not sufficiently anticlustered and the determination of the strain is not possible.

This repetitive plotting procedure is an ideal computer application. The coordinates of
each center can recorded by hand using graph paper or better with the aid of a digitizing
tablet. In some cases, such as deformed oolites, the centers may be clearly defined. In
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Figure 12.2 Deformed grains: (a) centers; (b) plotting; (c) ellipse (from Ramsay & Huber, 1983, p. 113
with permission of Elsevier.)

other cases the locations of the centers may be estimated or calculated from points along
the boundaries of the grains. Several programs are available to process this data file. De
Paor (1989) lists a BASIC program which perform the necessary calculations and plots
the results interactively.

Several refinements in the basic technique have been suggested. Crespi (1986) exam-
ined real and artificial patterns and discussed the sources of possible errors. Ghaleb and
Fry (1995) describe a computer program to produce center-to-center models. The tech-
nique has been mostly used for grain aggregates whose shapes are the result of strain,
but it has been extended to grain shapes due to pressure solution (Onasch, 1986a, b;
Bhattacharyya & Longiaru, 1986).

Rocks are, of course, three-dimensional aggregates of grains, and a section through
such an array will not pass through all grain centers. Erslev (1988) suggested a nor-
malization procedure which improves the definition of the ellipse-shaped vacancy by
compensating for this effect. McNaught (1994, 2002) described an alternative method
and a way of estimating uncertainty. Erslev and Ge (1990) and Ailleres and Campenois
(1994) described how to calculate a best-fit ellipse. Dunne, et al. (1990) noted that if the
post-deformation grain centers do not coincide with their pre-deformation centers, the
strain will be underestimated.

Recently, Waldron and Wallace (2007) described a method for objectively fitting
ellipses to the center-to-center method.

Alternatives to the center-to-center approaches have also been suggested. Panozzo
(1984, 1987) developed methods by treating the traces of grain boundaries as reoriented
lines. Srivastava (1995) described a quick and easy way to estimate strain by counting
the number of grains intersected along a series of radiating lines.

12.3 Deformed fossils

Fossils often possess planes of symmetry, known angular relationships, or proportions
which are constant in individuals of a given species. They are, therefore, common objects
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of known original shape. Wellman (1962) showed how the shape and orientation of the
strain ellipse can be obtained from a collection of such forms in a simple way.

Problem

• From a collection of deformed brachiopods on a plane, construct the strain ellipse
(Fig. 12.3a).
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Figure 12.3 Brachiopods: (a) slab of shells; (b) deformed lines; (c) strain ellipse.

Construction

1. Transfer the hinge and symmetry lines of each deformed fossil to a tracing sheet
(Fig. 12.3b).

2. On this tracing draw a line of arbitrary orientation and length; it should be at least
10 cm long and preferably not parallel to any fossil line (see line AB in Fig. 12.3b).

3. For each deformed shell in turn, draw a pair of lines parallel to the hinge and another
pair parallel to the median line through the points A and B giving a parallelogram
(see example drawn for Shell No. 8 in Fig. 12.3c).

4. Through all the pairs of fossil points determined in this way, including points A and
B, sketch a best-fit ellipse and add the major and minor axes. This represents the strain
ellipse.

5. Measure the orientation of the principal semi-axes, and their lengths.
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Answer

• Because the size of the constructed ellipse depends entirely on the arbitrary length of
line AB, the absolute lengths of its semi-axes have no meaning. However, their ratio
is independent of the size of the ellipse, and is found to be Rs = 1.7. The S1 direction
makes an angle of 10◦ with the hinge of Shell No. 5. These results can be checked
against the small ellipse, which was a circle before deformation.

In order to see why this method works, imagine having made the same construction
before deformation. Because each pair of hinge and symmetry lines was originally per-
pendicular, rectangles rather than parallelograms would have resulted. Collectively, the
corners of all these rectangles would have defined a circle with AB as diameter. This is
the circle from which the constructed strain ellipse is derived.

Now reexamine the deformed brachiopods. The shape of each deformed shell is a
function of orientation. Strictly, all right angles have been eliminated. However, Shell
No. 3 is still nearly symmetrical; this is also the narrow form. Shell No. 4 also retains
close to a 90◦ angle, but it is deformed into a broad form. Because the principal axes are
the only pair of lines which remain perpendicular, the S1 direction must nearly coincide
with the hinge line of Shell No. 3, and the median line of Shell No. 4. Thus one can
estimate the orientation of the strain ellipse by inspection.

12.4 Deformed pebbles

Before deformation, the shapes of the constituent grains in many rocks are approximately
elliptical.After a homogeneous deformation, these shapes are systematically changed and
from these the state of strain can be determined. Because these situations are common,
the methods that have been developed are widely used and reliable. Lisle (1985a) gives
a comprehensive description.1

The way elliptical grains deform is geometrically similar to the results of superimposed
deformations (see §11.6). The role of the strain ellipse after the first deformation is
replaced by the shape of the elliptical grain.

Given a sufficient number of homogeneously deformed two-dimensional pebbles sub-
ject to the conditions that the initial shapes were identical and the pebbles were initially
without preferred orientation, we may determine the orientation of the principal strain
axes in the deformed state, the strain ratio Rs and the initial shape ratio Ri . The basic
method relies on the fact that two of these pebbles will be oriented coaxially with the
strain ellipse and these will be deformed into narrow and broad forms. There are two
general cases.

1Mulchrone and Meere (2001) describe a computer program which performs the analysis of passively deformed elliptical
markers. Meere and Mulchrone (2003) examine the role of sample size in several different analytical techniques.
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Figure 12.4 Narrow and broad forms: (a) Ri > Rs; (b) Ri < Rs.

1. If Ri > Rs the axes of the resulting two extreme shapes will be perpendicular and the
deformed ellipses will have the narrow and pre-circle broad forms (Fig. 12.4a). The
axial ratios of these are related by

Rmax = RsRi and Rmin = Ri/Rs.

Solving these two equations for the two unknown ratios gives

Rs = √Rmax/Rmin and Ri = √RmaxRmin. (12.1)

In the example Rmax = 2.24 and Rmin = 1.14, then Rs = 1.4 and Ri = 1.6.
2. If Ri < Rs the axes of the two extreme shapes will be parallel and the deformed

ellipses will have the narrow and post-circle broad forms (Fig. 12.4b). The axial ratios

Rmax = RsRi and Rmin = Rs/Ri.

Solving these for the two unknown ratios gives

Rs = √RmaxRmin and Ri = √Rmax/Rmin. (12.2)

In the example, Rmin = 2.24 and Rmin = 1.14, then Rs = 1.6 and Ri = 1.4.

Problem

• From a section through a suite of deformed pebbles, determine the final shape ratios
Rf of the narrow and broad forms, and from these determine Ri , Rs and the orientation
of the principal strain axes (Fig. 12.5a).

Procedure

1. Measure the orientational angle θ ′ which the long axis of each pebble makes with
arbitrary reference direction.

2. Measure the axial length of each pebble and calculate the final shape ratio Rf .
3. Plot each pair of values (θ ′, Rf ) as a point on a graph (Fig. 12.5b).
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Figure 12.5 Deformed pebbles: (a) angle θ ′; (b) Rf vs. θ ′.

Results

1. These eight points lie on a closed tear-drop shaped curve, symmetrical about a fixed
value of θ ′, which defines the S1 direction. Because both the narrow and broad forms
have the same orientation, this is an example where Ri < Rs (see Fig. 12.5b). Having
identified this direction, it is then convenient to adopt it as the reference direction and
to relate the orientation of the deformed pebbles to it by the angles ±φ′.

2. The two points on the line φ′ = 0 are Rmax = 6.5 and Rmin = 1.5.

Answer

• Using these values of Rmax and Rmin in Eqs. 12.2 gives Rs = 3.12 and Ri = 2.08.

In Fig. 12.5a, the black ellipse was initially a circle, and therefore represents the strain.
Note that its ratio Rs plots near the center of the Rf /φ′ curve (Fig. 12.5b).

Suites of deformed elliptical grains have characteristic ranges of orientations, called
the fluctuation F (Cloos, 1947, p. 861), and it can be determined from the Rf /φ′ curve
as the angle between the extreme orientations. Depending on the relative values of Ri

and Rs there are three characteristic types of fluctuation.

1. If Ri > Rs then F = 180◦.
2. If Ri = Rs then the “broad” form is a circle and F = 90◦.
3. If Ri < Rs then F < 90◦ (in Fig. 12.5b, F = 56◦).

The important feature of this evolving fluctuation is that F remains constant at 180◦
until Rs = Ri at which point a preferred orientation suddenly appears, and thereafter
strengthens as Rs increases. In many deformed terranes, slaty cleavage appears quite
abruptly and Elliott (1970, p. 2232) suggested that this cleavage front marks such a
sudden onset of preferred orientation.
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With a constant initial shape ratio this example is not very realistic. If a variety of
distinct initial shapes are present, the Rf /φ′ graphs consist of a series of nested curves,
one for each Ri .

More generally yet, real data will not plot on such distinct curves but will appear as a
scatter of points, reflecting a continuous variation of initial shapes. Then a quasi-statistical
graphical technique is usually used (see Lisle, 1985a). Several computer programs are
available to accomplish this analysis (Peach & Lisle, 1979; Kutty & Joy, 1994; Mulchrone
& Meere, 2001).

As described, this procedure needs a range of original orientations for a complete
analysis, but Borradaile and McArthur (1991), followingYu and Zheng (1984), linearized
the Rf /φ′ curves, thus facilitating the analysis of initially non-random fabrics.

In applying any of these techniques to naturally deformed materials, there are several
factors which may limit their use. Most naturally occurring sedimentary fabrics show
some degree of preferred orientation. In a study of the simulated deformation of such
fabrics, Seymour and Boulter (1979) showed that large errors may result if it is mistakenly
assumed that they were originally uniform. Also, if there is a ductility contrast between
the elliptical objects and the matrix material, an additional component of rotation will
be present which may invalidate the strain analysis (De Paor, 1980).

12.5 Geometry of the strain ellipse

With only a few strained objects we need a different approach and this requires a more
fundamental description of the way lengths and angles change as the result of a defor-
mation. To do this we refer the initial state to a set of xy axes which are parallel to the
principal directions in the unstrained state (Fig. 12.6a). The equation of the reference
circle of unit radius in these material coordinates is then

x2 + y2 = 1. (12.3)

Similarly, we refer the strained state to a set of x′y′ axes with the same orientation
(Fig. 12.6b). The equation of the strain ellipse in these spatial coordinates is then

x′2

S2
1

+ y′2

S2
3

= 1. (12.4)

By this choice of axes and directions we have eliminated from consideration any transla-
tion or rotation and we do this to concentrate on the properties of the stretch component
of the deformation.

Within this framework we now examine the geometrical changes associated with a
particular material line. At a typical point P on the unit circle, we identify the direction
of the radius vector r = OP by the angle φ it makes with the x axis (Fig. 12.6a). The
components of this vector are (x, y) and its direction cosines are (cos φ, sin φ).
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The corresponding point on the ellipse is P ′ and we identify the direction of the radius
vector r′ = OP′ by the angle φ′ it makes with the x′ axis (Fig. 12.6b). The components
of this vector are (x′, y′) and its direction cosines are (cos φ′, sin φ′).

As a result of strain, radius vector r of the circle is transformed into radius vector r′ of
the ellipse. Three separate geometrical features are associated with this transformation
and all these changes can be observed within a circle-to-ellipse card-deck experiment.

1. Orientational angle φ changes to φ′.
2. The length of a radius of a circle r = 1 changes to the radius of an ellipse r ′ = S.
3. The right angle between r and the tangent T at point P(x, y) changes and the measure

of this change is the angle of shear ψ . This is represented by the angle between the
tangent T ′ and the line perpendicular to r′ at point P ′(x′, y′). Note that in the first
and third quadrants the tangent rotates in an anticlockwise sense hence ψ is positive.
In the two other quadrants ψ is negative.
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Figure 12.6 Circle and ellipse: (a) xy coordinates; (b) x’y’ coordinates.

We now need algebraic expressions for each of these changes associated with the
material line in terms of its orientation and the principal stretches.2

Change in orientation

The relationship between vector r(x, y) which marks a material line in the reference
circle and the vector r′(x′, y′) which marks the same material line in the strain ellipse is

x′ = S1x and y′ = S3y. (12.5)

That is, the x component of r is stretched to become the x′ component of r′ and the y

component is stretched to become y′. Dividing the second of these equations by the first
gives

y′

x′ = S3

S1

y

x
. (12.6)

2On a first reading you may wish to skip the details of the derivations and go directly to §12.6 for the results.
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From Figs. 12.6a and 12.6b

tan φ = y/x and tan φ′ = y′/x′.

Using these in Eq. 12.6 and using the definition of the strain ratio Rs = S1/S3 we have
the useful result, first obtained by Harker (1885, p. 822),

tan φ′ = tan φ

Rs

or Rs = tan φ

tan φ′ . (12.7)

This result may be used in two ways. The first version gives φ′ when φ and Rs are known.
By definition Rs > 1 and therefore φ′ < φ, that is, the angle a material line makes with
the S1 direction is generally reduced. The only exceptions are when φ = 0◦ or φ = 90◦
and the orientation is unchanged. The second version can be used to determine the strain
ratio Rs if both φ and φ′ are known.
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Figure 12.7 Strain ellipse: (a) stretch; (b) angle of shear.

Change in length

Next we need an expression for the stretch associated with the transformation of r into
r′. From Fig. 12.7a, where the magnitude of the radius vector r′ is the stretch S,

x′ = S cos φ′ and y′ = S sin φ′. (12.8)

Using these expressions for x′ and y′ in the equation of the ellipse of Eq. 12.4 we have

S2 cos2φ′

S2
1

+ S2 sin2φ′

S2
3

= 1 or
1

S2
= cos2φ′

S2
1

+ sin2φ′

S2
3

. (12.9)

We now introduce a new parameter of longitudinal strain. The reciprocal quadratic
elongation λ′ is defined as the reciprocal of the square of the stretch

λ′ = 1/S2. (12.10)
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The principal reciprocal quadratic elongations are then λ′
1 = 1/S2

1 and λ′
3 = 1/S2

3 and
Eq. 12.9 becomes

λ′ = λ′
1 cos2φ′ + λ′

3 sin2φ′. (12.11)

and this is the desired result. The equation of the strain ellipse can now be written as (see
Eq. 12.4)

λ′
1x

′2 + λ′
3y

′2 = 1. (12.12)

Change of a right angle

To find the angle of shear associated with the direction OP′ graphically, draw vector n
normal to the line T ′ tangent to the ellipse at point P ′ (Fig. 12.7b). Then ψ is the angle
between r′ and n.

We can also find an expression for ψ from the dot product of vectors r′ and n (see
§7.3). This is simple in principle but unfortunately a little messy in execution because of
the need to normalize the components of n and to convert this angle to a strain parameter.

The equation of tangent T ′ can be written down directly from the equation of the ellipse
using a simple recipe: replace one x′ and one y′ in Eq. 12.12 with the corresponding
coordinates of the point of tangency P ′(x′, y′) in the second of Eqs. 12.9. After dividing
through by S the result is

(λ′
1 cos φ′)x′ + (λ′

3 sin φ′)y′ = 1/S.

The direction cosines of the normal vector n are proportional to the coefficients of x′ and
y′ in this equation. Normalizing both by dividing each by the square root of the sum of
their squares gives

λ′
1 cos φ′√

λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′
and

λ′
3 sin φ′√

λ′
1

2 cos2φ′ + λ′
2

2 sin2φ′
,

and these are the required direction cosines of n. With these direction cosines of n and
the direction cosines of r′ from Eq. 12.8, the dot product gives an expression for cos ψ

cos ψ = (λ′
1 cos φ′)(cos φ′) + (λ′

3 sin φ′)(sin φ′)√
λ′

1
2 cos2φ′ + λ′

3
2 sin2φ′

,

which, after expanding and squaring, becomes

cos2ψ = (λ′
1 cos2φ′ + λ′

3 sin2φ′)2

λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′ .
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Substituting the identities cos ψ = 1/ sec ψ and sec2 ψ = 1 + tan2ψ , together with the
definition γ = tan ψ , this can be rearranged to give

γ 2 = λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′

(λ′
1 cos2φ′ + λ′

3 sin2φ′)2
− 1. (12.13)

Observing that the denominator is equal to λ′2 (see Eq. 12.11), and defining a new
measure of shear strain

γ ′ = γ λ′ or γ = γ ′/λ′, (12.14)

we then write Eq. 12.13 as

γ ′2 = λ′
1

2 cos2φ′ + λ′
3

2 sin2φ′ − (λ′
1 cos2φ′ + λ′

3 sin2φ′)2.

Expanding and combining terms gives

γ ′2 = λ′
1

2 cos2φ′(1− cos2φ′)−2λ′
1λ

′
3 cos2φ′ sin2φ′ +λ′

3
2 sin2φ′(1− sin2φ′). (12.15)

From the identity cos2φ′ + sin2φ′ = 1 we obtain two relationships

cos2φ′ = (1 − sin2φ′) and sin2φ′ = (1 − cos2φ′).

Using these in Eq. 12.15 and again rearranging yields

γ ′2 = (λ′
1

2 − 2λ′
1λ

′
3 + λ′

3
2) cos2φ′ sin2φ′ = (λ′

1 − λ′
3)

2 cos2φ′ sin2φ′.

Taking the square root we finally obtain the desired result

γ ′ = (λ′
1 − λ′

3) cos φ′ sin φ′. (12.16)

12.6 Mohr Circle for finite strain

The introduction of the new strain parameters λ′ (Eq. 12.10) and γ ′ (Eq. 12.14) was
aimed at obtaining Eq. 12.11 and Eq. 12.16 in these particular forms. It is useful to
convert them by substituting the double angle identities

cos2 φ′ = 1
2(1 + cos 2φ′), sin2 φ′ = 1

2(1 − cos 2φ′), cos φ′ sin φ′ = 1
2 sin 2φ′,

with the result

λ′ = 1
2(λ′

1 + λ′
3) + 1

2(λ′
1 − λ′

3) cos 2φ′, (12.17a)

γ ′ = 1
2(λ′

1 − λ′
3) sin 2φ′. (12.17b)
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These should look familiar. Their form is identical to the equations for the normal and
shearing components of the traction vector (see Eqs. 9.17). Just as in that case, these
expressions for λ′ and γ ′ can be represented graphically by a Mohr Circle for finite strain.
The main feature of this construction is a circle on the horizontal λ′ axis (Fig. 12.8a).
The distance to the center c and its radius r are given by

c = 1
2(λ′

1 + λ′
3) and r = 1

2(λ′
3 − λ′

1).

This circle has a number of features in common with the Mohr Circle for stress, but
there are also some important differences. Because the lengths of the semi-axes of the
strain ellipse are never negative, the circle lies wholly to the right of the origin.

Because S1 > S3, by definition λ′
1 < λ′

3. Therefore (λ′
1 − λ′

3), which appears in both
of these expressions, is always a negative quantity. This has two consequences.

1. By Eq. 2.17a, if φ′ = 0 (2φ′ = 0) then λ′ = λ′
1 and r cos 2φ′ < 0 so that λ′

1 plots to
the left of the center. If φ′ = 90◦ (2φ′ = 180◦) then λ′ = λ′

3 and r cos 2φ′ > 0 and
λ′

3 plots to the right of the center. This reversal arises from the definition λ′ = 1/S2.
2. As we have noted in Figs. 12.6 and 12.7, the angle of shear ψ , and therefore also the

shear strain γ , is positive in the first and third quadrants (0 < φ′ < 90◦ and 180◦ <

φ′ < 270◦) and negative in the other two. By Eq. 12.17b, however, the parameter
γ ′ has the opposite sign in each of these quadrants. Because of this switch in signs,
negative values of γ ′ are plotted above the horizontal axis and positive values are
plotted below it. This is the important clockwise-up convention used for constructing
this Mohr Circle (Treagus, 1987).3 Now both 2φ′ (Fig. 12.8a) and φ′ (Fig. 12.8b) are
measured in the same sense on the Mohr Circle and physical planes.

(b)(a)
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λ�3λ�1
O

2φ�
ψ φ�
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Figure 12.8 Finite strain: (a) Mohr Circle plane; (b) physical plane.

There is an auxiliary construction which greatly increases the usefulness of this dia-
gram. The slope angle of line OP′ is the angle of shear ψ associated with this particular
direction (Fig. 12.8a). This fact follows directly from the definition tan ψ = γ ′/λ′ (see

3This same convention is used in the Mohr Circle for stress when tension is reckoned positive (see Fig. 9.15b).
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Eq. 12.14), and it bypasses the mathematically convenient but otherwise obscure param-
eter γ ′, which is therefore little used in graphical work.

12.7 Pole of the Mohr Circle

The geometry of the physical plane and Mohr Circle plane can be even more closely
related with the aid of a special point on the circle called the pole or origin of lines. This
point, here denoted OL, has a very useful property: A line through OL which intersects
the circle at P ′ is parallel to the corresponding line on the physical plane whose strain
parameters are given by the coordinates of point P ′.
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OL
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φ�

λ�1 λ�3
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λ�

γ '

φ�

(c)

O O

S1S3
λ�1 λ�3

Figure 12.9 Pole construction: (a) physical plane; (b) Mohr Circle plane; (c) combination.

The pole is the point on the Mohr Circle through which all lines parallel to the cor-
responding lines on the physical plane pass just as they radiate from the center of the
ellipse (Fig. 12.9a). This is the meaning of the phrase origin of lines which is used here
as a short definition. It is analogous to the origin of normals of the Mohr Circle for stress.
The pole may be located in several ways, most simply by drawing either a line parallel
to the S1 axis of the ellipse through the point λ′

1 to intersect the circle at OL, or a line
parallel to the S3 axis of the ellipse through the point λ′

3 to intersect the circle at OL

(Fig. 12.9b). Note that these two lines at OL are orthogonal, as are the axes of the ellipse.
Having located the pole we may now combine the two representations of the state of

finite strain by drawing the ellipse centered at OL (Fig. 12.9c). Note that this construction
would not be possible without the clockwise-up convention for shear. In practice it is not
necessary to draw an accurate ellipse because all the quantitative information is contained
on the circle, but a sketch is a useful aid, especially for beginners.

We now may easily determine the strain parameters associated with any general line.
For example, the line through OL parallel to any general radius in the strain ellipse
making an angle φ′ with the S1 direction intersects the circle at P ′ and the coordinates
of this point are the required strain parameters associated with this radius (Fig. 12.9c).

We can then see that the Mohr Circle represents the locus of all possible values of the
two strain parameters for a given ellipse and the pole represents its particular orientation
on the physical plane. As the ellipse rotates on the physical plane, the pole moves along
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the circumference of the Mohr Circle. There are two special cases: If the S1 direction is
vertical, pole OL coincides with the point representing λ′

1 (Fig. 12.10a), and if the S3

direction is vertical, pole OL coincides with the point representing λ′
3 (Fig. 12.10b).

O λ�

(a)

γ�

O λ�

(b)

γ�

OL OL

S1

S3

Figure 12.10 Special cases: (a) OL = λ′
1; (b) OL = λ′

3.

An even more important use of the Mohr Circle construction is to determine the
principal stretches and their orientation from measurements of deformed angles or lines,
and the pole plays a crucial role in this procedure.

The important first step is to form a strain rosette by drawing the stretched lines
radiating from a single point, just as the radius vectors radiate from the center of the strain
ellipse. In all these applications we are free to rotate the rosette into any orientation.

12.8 Strain from measured angles

Features from which angular changes can be determined are relatively common. As we
have seen in the Wellman construction (Fig. 12.3), the angle of shear can be determined
directly from a single deformed bilaterally symmetrical fossil. There are two main cases
and both solutions utilize the pole and both follow closely the method described by Lisle
(1991). The first involves one angle of shear associated with a line in known angular
relation to the principal axes.

Problem

• A deformed trilobite is exposed on the plane of slaty cleavage and its median line m

makes an angle of φ′
m = 20◦ with a lineation marking the S1 direction. The angle of

shear associated with this line is ψm = +36◦ (Fig. 12.11a). Determine the shape of
the strain ellipse.

Construction

1. Form a rosette by assembling the strained median line m and the line representing the
S1 direction radiating from a common point (Fig. 12.11b).

2. On a set of λ′γ ′ axes, draw a line through the origin with a slope angle ψm = +36◦
(with the clockwise-up convention this line slopes downward).
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(a)

(b) (c)

S1 direction

O
kλ�1 kλ�3
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ψm

φ�
ψm

φ�

m

Figure 12.11 Trilobite: (a) physical plane; (b) rosette; (c) Mohr Circle.

3. At a convenient but arbitrary distance along the sloping ψm line locate the pole OL,
which is then a first point on the circle.

4. At OL construct the rosette with arm m along the ψm line. The arm representing the
S1 direction then intersects the horizontal axis at λ′

1, which is a second point on the
Mohr Circle.

5. The perpendicular bisector of the segment OLλ′
1 locates the center C on the horizontal

axis.
6. Then with radius Cλ′

1 complete the circle (Fig. 12.11c).

Answer

• Because the pole OL is arbitrarily located in this procedure, the two principal values
can not be uniquely determined. We can, however, determine the strain ratio from

Rs =
√

kλ′
3/kλ′

1, (12.18)

where k is an unknown scale factor. This calculation, based on measurement of the
two intercepts, yields Rs = 2.0. An analytical solution for this problem is given by
Ramsay (1967, p. 234).

For some purposes it is convenient to represent the strain derived from such angular
measurements by a specific ellipse, and the ellipse with the same area as the unit circle
is the most appropriate. From the definition of the strain ratio (Eq. 11.4)

Rs = S1/S3,

and from the condition for no area change � = 0 (Eq. 11.15)

S3 = 1/S1,
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we can express the principal stretches S̃1 and S̃3 of the constant-area ellipse as

S̃1 = √Rs and S̃3 = 1/
√

Rs. (12.19)

The second problem involves known angles of shear associated with two lines and the
angle between these two lines. Then both the shape of the ellipse and its orientation can
be found.
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Figure 12.12 Brachiopods: (a) physical plane; (b) rosette; (c) Mohr Circle 1; (d) Mohr Circle 2.

Problem

• The angle between the hinge lines of two deformed brachiopods is α′ = 30◦. The angles
of shear associated with these lines are ψa = −35◦ and ψb = +27◦ (Fig. 12.12a).
Determine the ratio of the principal stretches and their orientation.

Construction

1. Construct a strain rosette from hinge lines a and b (Figs. 12.12a and 12.12b).
2. On a pair of λ′γ ′ axes draw lines making angles of ψa and ψb with the horizontal λ′

axis and passing through the origin (Fig. 12.12c), paying attention to their signs and
the clockwise-up convention.

3. Arbitrarily locate OL on either of these lines.

(a) If the ψa line is used, then position the rosette at that point with arm a along the
ψa line (Fig. 12.12c). Arm b then intersects the ψb line at P ′

b.
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(b) If the ψb line is used, then position the rosette at that point with arm b along the
ψb line. Arm a then intersects the ψb line at P ′

a (Fig. 12.12d).

4. The perpendicular bisector of either chords OLP ′
b or OLP ′

a locates the center C on
the λ′ axis. With radius OLC = CP ′

b complete the circle.
5. Chords OLλ′

1 and OLλ′
3 fix the orientations of the principal directions relative to arms

a and b on the physical plane.

Answer

• Measure the distances to the two intercepts and calculate Rs =
√

kλ′
3/kλ′

1 = 2.0. The

S1 direction makes an angle of φ′
a = 11◦ with the arm c.

B
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Figure 12.13 Welded tuff: (a) model strain: (b) angle of shear ψb; (c) angle of shear ψc.

In some situations angles of shear may be constructed from angles that are not initially
right angles. The case of the deformed shards in welded tuff is one of these. Typi-
cally welded tuff display a strong foliation marked by the planar alignment of flattened
pumice and glass shards. Some of these shards have a distinctive Y-shape. These orig-
inate between gas bubbles in the original flow and the angles between the three arms
of these shards are approximately 120◦ (Ragan & Sheridan, 1972; Sheridan & Ragan,
1976). After deformation these angles are systematically changed (Fig. 12.13a) and these
changes can be converted into angles of shear.

Problem

• For the deformed shard circled in Fig. 12.13a, determine the strain ratio and the ori-
entation of the S1 direction.

Construction

1. Reassemble the three shard limbs a′, b′ and c into scalene triangle A′B ′C′
(Fig. 12.13b,c).

2. On two sides of this triangle construct an equilateral triangle (sides b′ and c′ are used
here). These represent the shape, but not size, of the triangle before deformation.

3. The perpendicular bisector on each of the two base sides is the height of the triangles.
As a result of a shear component parallel to these two sides apex point B is transformed
to point B ′ (Fig. 12.13b) and apex point C is transformed to point C′ (Fig. 12.13c).
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4. As a result of these transformations we have measures of the two shear components:
ψb = +36◦ and ψc = −25◦. The angle between sides b′ and c′ is α′ = 34◦.

5. With these angles we can now construct the Mohr Circle just as before (Fig. 12.14).
(a) Plot the line with slope ψb below and the line with slope ψc above the λ′ axis.
(b) Locate the pole OL on either of these lines (we chose the ψb line).
(c) Plot arm along the ψb line. The arm c then intersects the ψc at point Pc which is

a second point on the circle.
(d) Line OLPc is a chord of the circle and its perpendicular bisection locates the

center C of the circle on the λ′ axis. The circle can then be completed using as
radius OLC = PcC.

(e) The line connecting points OL and λ′
1 gives the orientation of the S1 direction

relative to the arms b and c.

Answer

• Rs =
√

kλ′
3/kλ′

1 = 2.0 and the S1 direction makes an angle φ′ = 11◦ with arm c

and this is parallel to the foliation. Similar results are obtained in any foliation-normal
section. This foliation is essentially horizontal over great distances and Rs increases
downward. This implies that the measured strain is due to the compaction of the tuff
and that S1 = S2 = 1.0 and S3 = 0.5.
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kλ�1 kλ�3

arm
 c

arm b

Figure 12.14 Mohr Circle for deformed shard.

An analytical solution for the problem of determining the strain from two angles of
shear is also available (Ragan & Groshong, 1993).

If the two measured angles of shear both have the same sign, the accuracy of the Mohr
Circle construction can be improved by reversing the sign of one of them. This is easily
accomplished by changing the line of reference. In the reference circle (Fig. 12.15a),
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radius vectors r1 = OP1 and r2 = OP2 are orthogonal. Then tangent T1 at point P1 is
parallel to r2 and T2 at P2 is parallel to r1. These are conjugate radii in the circle.

In the strain ellipse (Fig. 12.15b), the corresponding vectors r′
1 = OP′

1 and r′
2 = OP′

2
are no longer orthogonal but the tangent T ′

1 at point P ′
1 is still parallel to r′

2 and the
tangent T ′

2 at P ′
2 is parallel to r′. These are conjugate radii in the ellipse; thus any pair of

radii derived from conjugate radii are themselves conjugate. The measure of this change
is ψ and the magnitude of the angle is the same for each radius vector, but of opposite
sign.
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r'2
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Figure 12.15 Conjugate radii: (a) circle; (b) ellipse.

12.9 Strain from measured stretches

The strain ellipse can also be obtained from measured stretches. The deformed length of a
passive line of known initial length would yield an exact value of a stretch. Unfortunately
few, if any, such lines exist in nature. There is, however, a class of structures from which
the original length can be estimated. These are trains of micro-boudins bounded by
fractures. The gaps between the broken fragments may be filled with the ductile material
surrounding the boudins or they may be filled with vein material. Examples include
broken crystals of tourmaline, rutile and arsenopyrite, amphibole, epidote and kyanite,
and some forms of rectangular boudins developed in competent layers embedded in a
ductile matrix. Broken fossil parts have also been used.

In the Swiss Alps there are a number of localities where abundant belemnites have
been stretched in this manner (Beach, 1979). These have been examined extensively, but
the techniques apply to many similar structures. The goal is to estimate the stretch which
would have occurred in the absence of the rigid inclusion. Two simple methods have
been proposed, each giving different results.

In the conventional method (Ramsay, 1967, p. 248; Ramsay & Huber, 1983, p. 93),
the initial length l is taken as the sum of the lengths of the individual fragments and the
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final length l′ as the total sum of the individual gaps G and fragments F (Fig. 12.16a).
For N gaps and N + 1 fragments, we have

Gsum =
N∑

i=1

Gi and Fsum =
N+1∑
i=1

Fi. (12.20)

The second method involves a minor but important modification (Hossain, 1979). The
final length is taken as the distance between the midpoints of the two end fragments and
the initial length is the sum of the fragment lengths between these two points (Fig. 12.16b).
These lengths can be written as

Gsum =
N∑

i=1

Gi and Fsum = 1

2

N∑
i=1

(Fi + Fi+1) . (12.21)

This equation for Fsum and the corresponding illustration makes clear that Hossain’s
method is a straightforward extension of the center-to-center technique used for deformed
grains of §12.2.

In both Ramsay’s and Hossain’s methods the total stretch associated with the inclusion
train is then calculated from

S = l′/l = 1 + (Gsum/Fsum). (12.22)

Problem

• From the following gap and fragment lengths calculate the stretch using the methods
of Ramsay and Hossain: Gi = 7, 5, 9 mm and Fi = 11, 5, 7, 9 mm (Fig. 12.16).

Solution

1. By Ramsay’s method (Eq. 12.20) Gsum = 21 mm, Fsum = 32 mm and S = 1 +
21/31 = 1.656 25.

2. By Hossain’s method (Eq. 12.21) Gsum = 21 mm, Fsum = 22 mm and S = 1 +
21/22 = 1.954 55.

As can be seen, the stretch calculated by Hossain’s method is significantly greater than
that obtained by Ramsay’s method.

(a)

(b)

l'

l'

G1 G2 G3F1 F2 F3 F4

Figure 12.16 Stretch from boudinage: (a) Ramsay’s method; (b) Hossain’s method.
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Both of these approaches belie the complexity of the physical process of boudin for-
mation. In particular, neither method takes into account the evolutionary sequence of the
separation of the fragments which must have occurred.

Before the first fracture, the rigid inclusion can not record any strain.As a consequence,
the material adjacent to the inclusion must deform inhomogeneously to compensate for
the extension which would have occurred in the absence of the inclusion. Once a fracture
forms, a part of the extension will be accommodated by the separation of the fragments
and a part, as before, by inhomogeneous deformation near the inclusion contact.

Recognizing that the formation of multiple fragments involves a series of such steps,
a third method for estimating the stretch involves an iterative strain-reversal technique
and gives even better results (Ferguson, 1981, 1987; Ferguson & Lloyd, 1984; Ford
& Ferguson, 1985). Lloyd and Condliffe (2003) describe a computer program which
automates the process.

Steps

1. With N gaps, N steps are required to reverse the total stretch. Here N = 3.
2. The initial and final lengths associated with each gap are given by li = 1

2(Fi + F1+i)

and l′i = Gi + li . Thus

l1 = 5.5 + 2.5 = 8.0, l′1 = 7.0 + 8.0 = 15,

l2 = 2.5 + 3.5 = 6.0, l′2 = 5.0 + 6.0 = 11,

l3 = 5.5 + 2.5 = 8.0, l′3 = 9.0 + 8.0 = 17.

3. The stretch associated with each gap is calculated from Si = l′i/ li and the gap with
the smallest stretch Smin is taken as the final increment of stretch (Fig. 12.17a).

S1 = 15/8 = 1.875 00, S−1
1 = 0.533 33,

S2 = 11/6 = 1.833 33, S−1
2 = 0.545 45,

S3 = 17/8 = 2.125 00, S−1
3 = 0.470 59.

4. The gap associated with Smin (which is not always the smallest) is now closed by
applying the inverse stretch 1/Smin = 0.545 45 to its length. The other gaps are also
reduced by this same factor. There are now N − 1 = 2 gaps and N = 3 fragments
(Fig. 12.17b). Relabeling the gaps and fragments, the lengths are now

l1 = 5.5 + 6.0 = 11.5, l′1 = 11.5 + 0.181 82 = 11.681 82,

l2 = 4.5 + 6.0 = 10.5, l′2 = 10.5 + 1.272 73 = 11.772 73,
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and the stretches associated with the remaining gaps are

S1 = 11.681 82/11.5 = 1.015 81, S−1
1 = 0.984 44,

S2 = 11.771 73/10.5 = 1.121 21, S−1
2 = 0.891 89.

5. With this new Smin the next gap is closed and the other reduced (Fig. 12.17c). The
lengths are now

l1 = 11.5 + 4.5 = 16.0, l′1 = 16.0 + 1.089 49 = 17.089 49,

and the single remaining stretch is

S1 = 17.089 49/16 = 1.068 09, S−1
1 = 0.936 25.

With this, the final gap is now closed and the belemnite is whole (Fig. 12.17d).
6. The total stretch is the inverse of the product of the inverse stretches at each stage.4

S =
[

N∏
i=1

S−1
i

]−1

= 1

0.545 45 × 0.984 44 × 0.93625
= 1.989 13. (12.23)
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G1 G2 G3F1 F2 F3 F4
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F2

F1

F1

Figure 12.17 Iterative strain reversal technique (Ferguson, 1981).

Although this method still underestimates the total stretch it gives particularly good
results and is the recommended approach. By hand, it does, however, require extra work.
Hossain’s method gives nearly as good results if the gap and the fragment lengths are
fairly uniform and is just as quick as Ramsay’s approach.

From measured stretches we can determined the state of strain. In two dimensions,
there are two cases. If the two stretches and the angles they make with the principal

4The symbol
∏

means form the product of the series of all N items.
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directions are known, the principal stretches can be found, otherwise three stretches are
needed. The solutions follow the method of Lisle and Ragan (1988). The problem of
three stretches is the simpler one and we start with it.

a
b

c

Figure 12.18 Three idealized stretched belemnites.

Problem

• From the three stretched belemnites, determine the principal stretches and their ori-
entations (Fig. 12.18). (Because the gap and fragment lengths are exactly the same in
this idealization, the methods of Hossain and Ferguson give identical results.)

Approach

• Before undertaking the full construction it is useful to sketch the strain ellipse as a
visual check. This is done by assembling the three scaled stretched lines into a rosette
(Fig. 12.19a). Because the ellipse is centro-symmetric, each of these radius vectors
has an equal and opposite radius vector, and we then have three complete diameters
of the ellipse which can then be sketched with a fair degree of accuracy (Fig. 12.19b).

a b

c

b a

c
Sa

Sb

Sc

140
70

150

(a) (b)

S1

S3

Figure 12.19 Stretch belemnites: (a) scaled rosette; (b) sketched ellipse.

Construction

1. From the three measured stretches, the corresponding reciprocal quadratic elongations
are

Sa = 2.2 (λ′
a = 0.2066), Sb = 1.4 (λ′

b = 0.5102), Sc = 1.8 (λ′
c = 0.3086).

2. Rearrange the three stretch directions into a rosette with arm c between arms a and b

(Fig. 12.20a).
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3. Draw the vertical γ ′ axis (but not the horizontal λ′ axis) and add three parallel lines at
distances equal to the values of λ′

a , λ′
b and λ′

c using a convenient scale (Fig. 12.20b).
4. Arbitrarily locate the pole OL on the intermediate λ′

c line and at this point draw the
rosette so that arm c lies along this same line.

5. Through OL draw lines parallel to arm a to intersect the λ′
a line at P ′

a and parallel to
arm b to intersect the λ′

b line at P ′
b.

6. Points OL, P ′
a and P ′

c lie on the circle, and the perpendicular bisectors of chords OLP ′
a

and OLP ′
c intersect to locate its center.

7. Through this center now draw the horizontal λ′ axis and complete the circle. Measure
the intercepts to determine the values of λ′

1 and λ′
3.

8. Draw the orthogonal lines λ′
1OL and λ′

3OL (not shown). These give the orientation
of the principal axes relative to the rosette.

Answer

• The principal quadratic elongations and the corresponding principal stretches are

λ′
1 = 0.20 (S1 = 2.24) and λ′

3 = 0.60 (S3 = 1.29).

Note that the λ′ coordinate of P ′a is almost the same as λ′
1 (see Fig. 12.20b). The angle

between λ′
1 and arm a is 8◦ measured anticlockwise.

When constructing the rosette at OL arms a and b may not intersect the two corre-
sponding vertical λ′ lines. Then rotate the rosette 180◦ to reverse the directions of arms
and then proceed just as before. In this case the pole OL will be below the λ′ axis rather
than above it.
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Figure 12.20 Solution of the belemnite problem: (a) rosette; (b) Mohr Circle construction.

The graphical solution of the problem of two stretches in known angular relation with
the principal axes of the strain ellipse proceeds in a similar way, except that an extra step
is needed to locate a third point on the circle.
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Problem

• Two stretched tourmaline crystals are exposed on the plane of schistosity (Fig. 12.21a).
A prominent lineation on this plane marks the S1 direction. Determine the principal
stretches.

S1 lineation

b
a

(a)

Sa

Sb(b)

S1

S3

S3

φ'a

φ'b

Figure 12.21 Problem of two stretches: (a) tourmaline crystals; (b) rosette.

Construction

1. The two stretches, the corresponding reciprocal quadratic elongations and their ori-
entations relative to the S1 direction are

Sa = 1.7, λ′
a = 0.3460, φ′

a = +20◦,
Sb = 1.4, λ′

b = 0.5102, φ′
b = −40◦.

2. Construct a rosette representing the two stretches and the principal axes (Fig. 12.21b).
3. Draw the vertical γ ′ axis and a pair of parallel lines at scale distances equal to the

values of λ′
a and λ′

b (Fig. 12.22a).
4. In order to find three points on the circle it is necessary to use the strain rosette twice.

(a) First, arbitrarily locate pole OL on the λ′
b line and construct the rosette there with

arm b along the λ′
b line. Then draw a line parallel to arm a to intersect the λ′

a line
at P ′

a . This gives two points on the circle (Fig. 12.22a). The λ′
3 point on the circle

lies on the arm representing the S3 axis.
(b) Second, if this yet to be located λ′

3 point were the pole, then the S3 axis would
be vertical (see Fig. 12.10b). From this point arm a would intersect the circle at
point P ′

a . To locate this λ′
3 point we simply reverse this construction by making

OL = P ′
a and constructing the rosette there so that the S3 axis lies along the vertical

λ′
a line. Then arm a intersects the line representing the first S3 direction to give the

λ′
3 point. We now add the horizontal λ′ axis to the diagram (Fig. 12.22b).

5. The perpendicular bisector of the chord P ′
aP

′
b intersects the λ′ axis at center C and

the circle can then be completed with OLC = P ′
aC as radius (Fig. 12.23).
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Answer

• Measuring the distances of two intercepts gives

λ′
1 = 0.28 (S1 = 1.9) and λ′

3 = 0.84 (S3 = 1.1).
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Figure 12.22 Graphical solution for two stretches: (a) Step 1; (b) Step 2.

Figure 12.23 Mohr Circle for
two stretches.
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In this construction the pole may be located on either of the vertical λ′
a or λ′

b lines. If,
as here, it is chosen on the b line the pole will be on the lower semi-circle, and if on line
a it will be on the upper semi-circle. This method breaks down when the two stretched
lines make the same angle with the S1 direction and lacks sensitivity as this condition is
approached.

12.10 Restoration

The importance of determining the state of strain lies in the fact that it describes in
the most fundamental way the changes in shape and size which occur as the result of
homogeneous deformation. Once we have determined the strain ellipse we immediately
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know that it was derived from a circle of unit radius. With this information we can then
restore any strained object to its initial shape and size.

A simple but important case is the determination of the original thickness of a homo-
geneously deformed layer. If a material line initially normal to bedding is marked by
some physical feature then the associated strain in this single direction could easily be
removed. In a few rare situations this may be possible. For example, Skolithus is a fos-
silized worm tube originally normal to bedding surfaces (McLeish, 1971; Wilkinson,
et al., 1975). In most cases, however, a more general approach must be used.
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Figure 12.24 Sedimentary bed: (a) deformed thickness t’; (b) restored thickness t.

Problem

• The thickness of a deformed layer is t ′ = 1.30 m. If the S1 direction is vertical and
S1 = 1.25, and S3 = 0.80 what was the original thickness?

Method

1. Arbitrarily locate a point O on the trace of the inclined lower boundary of the layer.
Then draw rays parallel to the principal direction to intersect the upper trace at points
A′

1 and A′
3 (Fig. 12.24a).

2. Measure the lengths of the vertical and horizontal segments l′1 = OA′
1 and l′3 = OA′

3.
Divide these two lengths by the corresponding principal stretches to give original
lengths l1 = l′1/S1 and l3 = l′3/S3.

3. With these restored lengths l1 and l2 locate new points A1 and A3 on these same rays
(Fig. 12.24b). These fix the relative position of the upper boundary of the layer before
deformation, and the perpendicular distance between this trace and point O is the
original thickness t .

Answer

• The thickness of the layer before deformation was t = 1.10 m. It should be especially
noted that if the line of measured thickness t ′ were unstrained directly the result
would be in error because t and t ′ are not generally marked by the same material line.
Schwerdtner (1978) described an analytical solution.
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Removal of the strain restores not only the initial thickness, but it also removes the
inclination due to the strain.Assuming the beds were originally horizontal, this remaining
dip is the result of the rotational part of the deformation, hence is equal to the angle of
rotation.

For more complicated shapes a more general approach is required. One such appli-
cation is the restoration of the shape of deformed fossils so that they may be accurately
identified (Bambach, 1973; Raup & Stanley, 1978, p. 75). The basic technique, however,
applies to any two-dimensional shape.

First, we construct a pair of axes on a drawing or photograph of the deformed object
with x′ parallel to the long axis and y′ parallel to the short axis of the strain ellipse
(Fig. 12.25a). In this system, the position vectors r′(x′, y′) of points on the outline of
the deformed object are determined. This may be done by hand, but it is far easier to
record the coordinates with the use a digitizing tablet. Clearly, the more points, the more
accurate the description of the deformed object and the more complete the reconstruction
can be.

The corresponding position vectors r(x, y) in the initial state are related to r′(x′, y′)
by the inverse equations (cf. Eq. 12.5)

x = x′/S1 and y = y′/S3.

With these we then transform these points back to their initial locations and plot the result
(Fig. 12.25b).

(a) (b)

r
r'

y'

x'

y

x

Figure 12.25 General restoration: (a) x’y’ plane; (b) xy plane.

If only Rs is known, the constant-area principal stretches of Eq. 12.19 can be used in
this reconstruction of its shape, but if � > 0 it will be too small and if � < 0 it will be
too large.
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12.11 Strain and related tensors

To show how strain and deformation are related, we decompose the deformation tensor
D into its stretch and rotational components.5 We do this by viewing the deformation as
having occurred in two steps: first, the rotation of the principal axes from their initial to
final state followed by the stretch to produce the strain ellipse. We write this sequence
as

D = SR, (12.24)

where the orthogonal rotation tensor R is applied first, followed by the symmetric left-
stretch tensor S (called this because it is written on the left of R).6 For computational
purposes we need the matrix form

[
D11 D12

D21 D22

]
=
[
S11 S12

S21 S22

] [
R11 R12

R21 R22

]
. (12.25)

We can perform this decomposition of D graphically with the aid of a Mohr Circle
construction.

Problem

• Determine the stretch component of the simple shear deformation

D =
[
D11 D12

D21 D22

]
=
[

1 0
1 1

]
.

Procedure

1. Using the convention of Fig. 12.26a, plot the two points

p1(D11, −D21) = (1, −1) and p2(D22, D12) = (1, 0)

on a pair of coordinate axes labeled D11, D22 and D12, D21 (Fig. 12.27a).
2. Locate the center C at the midpoint of diameter p1p2 and complete the off-axis circle

with radius p1C = p2C.
3. The sloping line through points O and C intercepts this circle at two points and the

lengths of the segments from O represent the principal stretches S1 and S3.
4. There are two ways of representing the circle representing S.

5As in §11.7 the same notation common to continuum mechanics is used here: majuscules (upper case letters ) for the
material description and minuscules (lower case letters) for the spatial description.

6A second decomposition is D = RS, that is, a stretch followed by a rotation. In this case S is the right-stretch tensor.
The ellipses produced by these two stretch tensors are identical but their orientations differ by the rotation. Because the
strain ellipse and its orientation are described in the final state which we observe it is convenient to think of the rotation
as having preceded the stretch (Elliott, 1970, p. 2234), so the left-stretch tensor is the one we will use.
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(a) A quick way is to draw a second set of axes with the same origin: the S11, S22

axis through the center of the circle and the S12, S21 axis perpendicular to this
(Fig. 12.27b). Having removed the rotation, the circle is now on axis.

(b) A more formal way is to rotate the center of the off-axis circle through the angle
of rotation ω to the horizontal axis and complete the circle as before (Fig. 12.27c).

(b)(a)

S11

−S21 S22

S12D11

−D21 D22

D12

Figure 12.26 Plotting conventions (after Means, 1992, p. 19): (a) Mohr Circle for D; (b) Mohr Circle for S.

Answer

• Measuring the lengths of the segments OS1 and OS3 the principal stretches are S1 =
1.62 and S3 = 0.62. similarly we can determine the coordinates of point p1 and p2

which then gives

S =
[

1.34 0.45
0.45 0.89

]
.

O

S1

S3
S3 S3

S1

S1C

(a) (c)

O

(b)

C

O

C

p2
p2 p2

p1
p1 p1

ω

D12,D21

D11,D22

S11,S22

S11,S22

S12=S21

S12=S21

Figure 12.27 Mohr Circles for D and S.

We can also find S analytically but to do so we first need to form the inverse of a matrix.
In ordinary algebra if a variable is multiplied by its reciprocal or inverse the result is the
number 1. We write this as

AA−1 = 1 or A−1A = 1,

where A−1 = 1/A. In matrix algebra, the place of 1 is taken by the unit matrix 1 (also
called the identity matrix and represented by the symbol I). That is[

1 0
0 1

]
= 1.
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We then write the product of matrix A and its inverse A−1 in two ways

AA−1 = 1 or A−1A = 1.

Note that these two results are the same. This is an exception to the general rule – the
product of a matrix and its inverse is commutative. With the first of these and denoting
the unknown inverse matrix A by the symbol B then

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[

1 0
0 1

]
. (12.26)

Performing the multiplication of the two square matrices we obtain four equations con-
taining the four unknown elements of B

A11B11 + A12B21 = 1,

A11B12 + A12B22 = 0,

A21B11 + A22B21 = 0,

A21B12 + A22B22 = 1.

Solving for these unknowns gives

B11 = A22

A11A22 − A12A21
, B12 = −A12

A11A22 − A12A21
,

B21 = −A21

A11A22 − A12A21
, B22 = A11

A11A22 − A12A21
,

and these Bij are the required elements of the inverse. With these results, we can quickly
form the inverse of any 2 × 2 general matrix A in three easy steps.

1. Interchange the elements of the main diagonal A11 and A22.
2. Change the signs of the off-diagonal elements A12 and A21.
3. Divide each element by the determinant of A.

The full result is

A−1 = 1

det A

[
A22 −A12

−A21 A11

]
. (12.27)

Note that if det A = 0 then A is singular and the inverse does not exit.
In this context A−1 reverses the effect of A. As in ordinary algebra, doing and then

undoing something is the same as not having done anything to begin with, and the matrix
operation of doing nothing is the unit matrix.
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To solve Eq. 12.24 for S, we post-multiply (that is, multiply from the right) both sides
by R−1 giving

DR−1 = SRR−1. (12.28)

A positive (anticlockwise) rotation is represented by the orthogonal matrix (see Eq. 7.42)

R =
[

cos ω − sin ω

sin ω cos ω

]
.

Applying the three steps, its inverse is

R−1 =
[

cos ω sin ω

− sin ω cos ω

]
. (12.29)

The transpose of a matrix is formed by exchanging rows and columns. For R this gives

RT =
[

cos ω sin ω

− sin ω cos ω

]
(12.30)

and we immediately see that the inverse of an orthogonal matrix has a particularly simple
form – the inverse and transpose are identical.

RT = R−1,

and we can then immediately write down this particular inverse. We can then write
Eq. 12.28 as

DRT = SRRT . (12.31)

The product RRT = 1 and this means that the two rotations cancel. Just as in ordinary
algebra, the unit matrix 1 is usually not written in such expressions. We then have

S = DRT . (12.32)

We can obtain the angle of rotation directly from the components of D from Eq. 11.37,

tan ω = D21 − D12

D11 + D22
(12.33)

and with this angle we can evaluate the elements of both R and RT .
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Problem

• Determine the left-stretch component of the simple shear deformation

D =
[

1 0
1 1

]
.

Solution

1. From Eq. 12.33, tan ω = 0.5 or ω = 26.5651◦ and we can then form the matrix
for RT

RT =
[

0.8944 0.4472
−0.4472 0.8944

]
.

2. Using this in Eq. 12.32 gives

S = DRT =
[

1 0
1 1

] [
0.8944 0.4472

−0.4472 0.8944

]
.

3. Performing the multiplication yields

S =
[

0.8944 0.4472
0.4472 1.3416

]
. (12.34)

We can construct the Mohr Circle for the left-stretch tensor S from the components of
its matrix representation.

Problem

• Draw the Mohr Circle for S of Eq. 12.34 and find the principal stretches and their
orientation.

Procedure

1. Draw a pair of coordinate axes and label the horizontal axis S11, S22 and the vertical
axis S12 = S21.

2. Using the convention of Fig. 12.26b, plot the two points

p1(S11, −S21) = (0.8944, −0.4472) and p2(S22, S12) = (1.3416, 0.4472)

using a convenient scale (Fig. 12.11).
3. The intersection of the diameter p1p2 and the horizontal axis locates the center C and

the circle can then be completed with Cp1 = Cp2 as radius.
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Figure 12.28 Mohr Circle for S
by direct plot.

C
O

S1S3

p2

p1

S11,S22

S12 = S21

2φ

Answer

• The angle between the x2 and the S1 direction is 2φ = 64◦ on the Mohr Circle plane
or φ = 32◦ on the physical plane and this gives the orientation of S1 in the deformed
state.

From this diagram we can also derive expressions for the principal stretches. Distance
c along the horizontal axis to the center of the circle and radius r of the circle are given by

c = 1
2(S11 + S22) and r = 1

2

√
(S11 + S22)2 + (S12 + S21)2.

Then

S1 = c + r and S3 = c − r.

In three dimensions we can not so easily form the rotation tensor R so this method for
finding S from D by first forming R−1 does not work in three dimensions. There is an
alternative approach which also leads to several important insights.

To solve for S by this more general method, post-multiply each side by its transpose
and apply the reversal rule whereby the transpose of a product is equal to the product of
transposes in reverse order

DDT = SR(SR)T = SRRT ST . (12.35)

Because RRT = 1 the rotations cancel leaving SST . By symmetry S = ST so

S2 = DDT , (12.36)

where S2 is the left Cauchy–Green tensor (Truesdell, 1991, p. 112). Geometrically DT

produces the same ellipse as D but rotates the principal axes from the deformed state
back to the undeformed state. Pre-multiplying (that is, multiplying from the left) by D
then rotates these principal axes back again to the deformed state and at the same time
produces an ellipse whose principal axes are the squares of the principal stretches S2

1
and S2

3 . This eliminates the rotation and S2 is symmetric. From S2 we can then find S
graphically.
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Problem 2

• Determine the components of left-stretch tensor S directly from the simple shear defor-
mation tensor

D =
[

1 0
1 1

]
.

Procedure

1. Form the product

S2 = DDT =
[

1 0
1 1

] [
1 1
0 1

]
=
[

1 1
1 2

]
.

2. As before, plot the points p1(1, −1) and p2(2, 1) and complete the Mohr Circle for
S2 (Fig. 12.29).

3. The principal values S2
1 = 2.62 and S2

3 = 0.38 are represented by the intercepts on
the horizontal axis.

4. Taking the square roots gives S1 = 1.62 and S3 = 0.62. With these construct the
Mohr Circle for S.

5. On this smaller S circle draw a diameter parallel to the diameter p1p2 on the larger
S2 circle. The coordinates of these two points give the components of S.

Answer

• The coordinates are p1(0.89, −0.45) and p2(1.34, 0.45). Therefore the matrix repre-
sentation of S is (compare Eq. 12.34)

S =
[

0.89 0.45
0.45 1.34

]
.

With S we can now find R. Pre-multiplying both sides of Eq. 12.24 by S−1 gives

S−1D = S−1SR.

Because S−1S = 1 we have

R = S−1D. (12.37)

All the results obtained so far are part of the material description of a deformation,
that is, the independent variables are the material coordinates. In geological applications
we must deal with the deformed state, that is, with the spatial coordinates as independent
variables.
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Figure 12.29 Mohr Circle for S2

and S.

O

S12 = S21

S11,S22

p2

p2

p1

p1

S1
2S1S3S3

2

The pair of affine transformation equations which relate the particle at spatial point
p(x1, x2) back to its initial location at P(X1, X2) is

X1 = d11x1 + d12x2 − T1,

X2 = d21x1 + d22x2 − T2.

The coefficients d11, d12, d21 and d22 describe the rotation and stretch required to restore
the initial configuration, and constants −T1 and −T2 describe the reverse translation. In
matrix form these two become[

X1

X2

]
=
[
d11 d12

d21 d22

] [
x1

x2

]
−
[
T1

T2

]
. (12.38)

This constitutes the spatial description of a homogeneous deformation and the essential
part of this description of the reverse transformation is the square matrix representing
the inverse deformation tensor

D−1 = d =
[
d11 d12

d21 d22

]
.

Just as before, we can decompose d into the product of a reverse rotation and an inverse
stretch. The first step involves forming the inverse of both sides of Eq. 12.24 to give

D−1 = (SR)−1.

Applying another version of the reversal rule whereby the inverse of the product of two
matrices is the product of inverses in reverse order we then have

D−1 = R−1S−1.
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This makes sense because if we take two steps forward and then back-up we must reverse
the second step first. We may also write this as

d = rs, (12.39)

where r = R−1 and s = S−1.
As in the previous example, we first determine the inverse stretch tensor graphically

with the aid of a Mohr Circle construction.

Problem

• Using Eq. 12.36, determine the inverse stretch component of the inverse simple shear
deformation

d =
[

1 0
−1 1

]
.

Procedure

1. With the same method used in Fig. 12.27, plot the points P1(1, 1) and P2(1, 0). With
C at the midpoint of P1P2 complete the off-axis circle (Fig. 12.30a).

2. Just as before there are two ways of drawing the circle for s. Either draw a second set
of axes with the s11, s22 axis through the center of this circle or rotate the circle to the
horizontal axis (Fig. 12.30b).

Answer

• The principal inverse stretches are s1 = 1.62 and s3 = 0.62 and the s1 direction makes
angle 2φ = 58◦ with the x1 axis.

O

(a)

O

(b)

P1

P2

s1

s3

s1s3

2φ 2φ

ω

P1

P2

d12,d21

d11,d22

s11,s22

s12=s21

Figure 12.30 Mohr Circles: (a) inverse deformation tensor d; (b) inverse stretch tensor s.

Note that the circles for d and s have the same radii as the circles for D and S. This
special case arises because there is no area change in simple shear. For more general
types of deformation these circles will differ in size.
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There is one more strain tensor which is of special interest. Just as in the case of
D we may also determine the inverse stretch tensor s directly from d. To do this, first
pre-multiply both sides of Eq. 12.39 by its transform:

dT d = (rs)T rs.

With the reversal rule

dT d = sT rT rs.

With rT r = 1 and sT s = s2 we have

s2 = dT d. (12.40)

Geometrically, the d rotates the axes from the deformed state back again to the initial
state. This is followed by dT which rotates the axes back to the deformed state.

Although it will not be obvious, s2 is just the finite strain tensor which is the main
subject of this chapter. So

s2 =
[
λ′

xx γ ′
xy

γ ′
yx λ′

yy

]
.

x2

x1

(a)

φ1

φ2

p2

p1
λ�

γ'

(b)

p2(1,-1)

p1(2,1)

ψ1

ψ2

2φ1

2φ2

T2

S2

T1

S1

O
C

Figure 12.31 Finite strain tensor: (a) simple shear ellipse; (b) corresponding Mohr Circle.

A comparison of a carefully drawn and scaled ellipse and the corresponding Mohr
Circle will demonstrate this fact using the simple shear deformation ψ = 45◦ and the
tensor

s2 = dT d =
[

1 −1
0 1

] [
1 0

−1 1

]
=
[

2 −1
−1 1

]
.
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1. Strain ellipse (Fig. 12.31a):
(a) The magnitude of the radius vector in the x1 direction is 0.72 and in the x2 direction

it is 1.00.
(b) The principal stretches are S1 = 1.62 and S2 = 0.62.
(c) The S1 direction makes angle φ1 = 58◦ with the x1 axis and φ2 = 32◦ with the

x2 axis.
(d) The angle tangent T1 at point p1 makes with the x2 axis is the angle of shear

ψ = 27◦ and the angle tangent T2 at point p2 makes with the x1 axis is the angle
of shear ψ = 45◦.

2. Mohr Circle (Fig. 12.31b):
(a) On a set of λ′γ ′ axes plot points p1(2, 1) and p2(1, −1) using the convention of

Fig. 12.26b.
(b) Line p1p2 is a diameter of the circle with center at C. The intercepts of the circle

represent the values of λ′
1 = 0.38 (S1 = 2.62) and λ′

2 = 2.62 (S2 = 0.62) (not
labeled in the figure).

(c) From the diagonal elements in the matrix representation of the tensor, the value
of λ′ associated with the x1 axis is 2.0000 and with the x2 axis is 1.0000. The
corresponding stretches are 1/

√
2 = 0.7071 and 1.0000.

(d) The λ′
1 direction makes angles 2φ1 = 116◦ and 2φ2 = 64◦ with the x1 and x2

axes.
(e) The slope angles of lines Op1 and Op2 are the angles of shear ψ1 = 27◦ and

ψ2 = 45◦ associated with each coordinate axis.

The underlying reason for the closeness of the strain ellipse and the Mohr Circle for
finite strain is the fact that the elements of the tensor are simply the coefficients in the
equation of the ellipse. The Mohr Circle is just a graphical way of describing the way
the coefficients in the equation of an ellipse vary under transforming the axes.

The equation of an ellipse centered at the origin has two forms. For the case where the
ellipse axes coincide with the coordinate axes it is

x2

a2
+ y2

b2
= 1,

where a = S1 and b = S2 are the lengths of the semi-axes. With the definition of λ′ this
may also be written as

λ′
1x

2 + λ′
2y

2 = 1.

This can be written in the form of the matrix equation

[
x y

] [λ′
1 0

0 λ′
2

] [
x

y

]
= 1.
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We then see that the square matrix is just the finite strain tensor in diagonal form. Similarly,
the equation of the general ellipse centered at the origin is

Ax2 + 2Bxy + Cy2 = 1.

This too can be written as a matrix equation

[
x y

] [A B

B C

] [
x

y

]
= 1.

Here, the square matrix of coefficients is just the finite strain tensor in its general form.
Hence [

A B

B C

]
=
[
λ′

xx γ ′
xy

γ ′
yx λ′

yy

]
.

Because s2 is symmetric, γ ′
xy = γ ′

yx and we can write the general equation of the strain
ellipse as

λ′
xxx

′2 + 2γ ′
xyx

′y′ + λ′
yyy

′2 = 1.

With the matrix representation of this tensor, we can also easily find an expression for
λ′. We first show how to do this using the diagonal form. In this case, the input is a radius
vector of the strain ellipse. The direction cosines of this vector are (cos φ′, sin φ′), where
φ′ is measured from the λ′ axis. Then[

λ′
1 0

0 λ′
3

] [
cos φ′
sin φ′

]
=
[
λ′

1 cos φ′
λ′

3 sin φ′
]

. (12.41)

This output vector is normal to the tangent through point P ′ on the ellipse. The expression
for λ′ is obtained by forming the dot product of this normal vector n and the unit vector
(cos φ′, sin φ′) giving

λ′ = [cos φ′ sin φ′] [λ′
1 cos φ′

λ′
2 sin φ′

]
= λ′

1 cos2 φ′ + λ′
2 sin2 φ′. (12.42)

This is the projection of the normal vector onto the unit vector in the direction of the
radius vector. This is identical to the result of Eq. 12.11 obtained algebraically.

In a similar way, we can also obtain an expression for λ′ from the full matrix represent-
ing the finite strain tensor. Here the direction cosines of the unit vector are (cos θ ′, sin θ ′),
where θ ′ is measured from the x axis.

λ′ = [cos θ ′ sin θ ′] [λ′
xx γ ′

xy

γ ′
yx λ′

yy

] [
cos θ ′
sin θ ′

]
.
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Performing the multiplications and using the equality γ ′
xy = γ ′

yx yields

λ = λ′
xx cos2 θ ′ + 2γ ′

xy cos θ ′ sin θ ′ + λ′
yy sin2 θ ′. (12.43)

The angle between the unit vector n normal to the tangent at P ′ and the unit radius
vector r in the direction OP ′ is the angle of shear ψ , and is obtained by the dot product
n · r. Then the expression for the associated shear strain γ ′ can be obtained in exactly
the same way used to obtain Eq. 12.16.

12.12 Exercises

1. Using the circle and ellipse of Fig. 12.32, graphically determine the stretch S and the
angle of shear ψ associated with a radius making an angle of φ′ = +30◦ with the
major axis. Check your result with a Mohr Circle construction.

Figure 12.32

2. Using the collection of deformed two-dimensional pebbles of Fig. 2., estimate the
orientation and shape of the strain ellipse.

1
2 3

4 5

6789

Figure 12.33
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3. Using the collection of deformed brachiopods of Fig. 12.34, estimate the orientation
and shape of the strain ellipse using Wellman’s method.

1
2

3
4

5 6

7
8

Figure 12.34

4. With a Mohr Circle construction determine the orientation and shape of the strain
ellipse from the two deformed brachiopods of Fig. 12.35.

Figure 12.35

5. With a Mohr Circle construction determine the orientation and shape of the strain
ellipse from the deformed shard in of Fig. 12.36.

Figure 12.36
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6. Determine the stretch of the single boudin shown in Fig. 12.37 and Table 12.1 using
the methods of Ramsay, Hossain and Fergusson.

G1 G2 G3F1 F2 F3 F4

Figure 12.37

Table 12.1

F G

1 12 mm 10 mm
2 18 mm 16 mm
3 22 mm 8 mm
4 14 mm

7. Three stakes were placed on the surface of a glacier to form an equilateral triangle
10 m on a side (Fig. 12.38a).After one year the positions of the stakes were resurveyed
(Fig. 12.38b). Determine the strain which accumulated over this time span.

A B

C

A'

B'

C'

N N

5 mm = 1 m
scale

(a) (b)

Figure 12.38
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Flow

13.1 Introduction

As we have seen in Chapter 11, the study of deformation is concerned solely with a
comparison of a body of rock in its initial and final configurations: the translation com-
pares the initial and final places, the rotation compares the initial and final orientations,
and the stretch compares the initial and final shapes and sizes (see Fig. 11.2). No consider-
ation is given to intermediate configurations or to a particular sequence of configurations
(Mase, 1970, p. 77).

However, the motion or flow1 by which a particular deformed state is attained is also of
considerable interest if we are to understand the processes involved in the formation of
geological structures. Kinematics is the branch of mechanics concerned with the motion
of bodies without regard to any associated forces.

In this chapter we first treat the basic elements of a kinematic analysis by describing
the measured velocity field in a tectonically active area and the information that can be
derived from it. Second, we consider an approach to the more difficult problem of under-
standing the flow responsible for old structures. Third, by considering the progressive
geometrical evolution of structures we can gain some insight into the geometrical nature
of geological flow patterns. Finally, after treating some important theoretical matters, we
use these results to consider briefly an alternative approach to estimating the time rates
of deformation.

13.2 Active tectonics

The San Andreas Fault zone of California is one of the most heavily instrumented active
structures in the world. For about three decades the velocities of many points through-

1Flow, like deformation, is a continuum concept. Thus we may speak of fluid flow, ash flow, debris flow, etc. as long as
an appropriate scale is used (see §11.2).
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