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SUMMARY

The eukaryotic genome is organized within cells as
chromatin. For proper information output, higher-
order chromatin structures can be regulated
dynamically. How such structures form and behave
in various cellular processes remains unclear. Here,
by combining super-resolution imaging (photoacti-
vated localization microscopy [PALM]) and single-
nucleosome tracking, we developed a nuclear
imaging system to visualize the higher-order struc-
tures along with their dynamics in live mammalian
cells. We demonstrated that nucleosomes form
compact domains with a peak diameter of
�160 nm and move coherently in live cells. The het-
erochromatin-rich regions showed more domains
and less movement. With cell differentiation, the
domains became more apparent, with reduced dy-
namics. Furthermore, various perturbation experi-
ments indicated that they are organized by a
combination of factors, including cohesin and
nucleosome-nucleosome interactions. Notably, we
observed the domains during mitosis, suggesting
that they act as building blocks of chromosomes
and may serve as information units throughout the
cell cycle.

INTRODUCTION

Eukaryotic genomic DNA is organized three-dimensionally in

cells as chromatin, which mediates various cellular functions

for genomic information output (Bickmore, 2013; Cardoso

et al., 2012; H€ubner et al., 2013). Various recent studies have re-

vealed that nucleosomes (10-nm fibers), consisting of DNA
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wrapped around the core histones (Luger et al., 1997), seem to

be folded irregularly as local structures in vitro (Maeshima

et al., 2016b) and in vivo (Chen et al., 2016; Eltsov et al., 2008;

Fussner et al., 2012; Hsieh et al., 2015; Maeshima et al.,

2016a; Ricci et al., 2015; Sanborn et al., 2015).

For higher-order chromatin structures, a number of structural

models have been investigated: ‘‘chromonema fibers’’ with a

diameter of 100–200 nm based on hierarchical helical folding

(Kireeva et al., 2004) and DNA replication foci domains

with an average diameter of approximately 110–150 nm

observed via pulse labeling (Albiez et al., 2006; Baddeley

et al., 2010; Cseresnyes et al., 2009; Jackson and Pombo,

1998; Markaki et al., 2010). Recently, chromosome conforma-

tion capture (3C) and related methods (Dekker and Heard,

2015) have revealed contact probability maps of genomic

DNA in formaldehyde (FA)-fixed cells. These maps suggest

that numerous chromatin domains are formed as functional

units of the genome, designated ‘‘topologically associating do-

mains’’ (TADs) (Dixon et al., 2012; Nora et al., 2012; Sexton

et al., 2012) or ‘‘contact domain/loop domain’’ (Rao et al.,

2014; Sanborn et al., 2015).

However, how such higher-order structures are formed and

then behave in various cellular processes in live cells remains un-

clear. To obtain an integrated view of higher-order structures and

their dynamics in livemammalian cells, we utilized a combination

of photoactivated localization microscopy (PALM) (Betzig et al.,

2006; Boettiger et al., 2016; Manley et al., 2008; Rust et al., 2006;

Ricci et al., 2015) and single-nucleosome tracking (Hihara et al.,

2012; Nozaki et al., 2013). We demonstrated that nucleosomes

form compact domains in live cells during mitosis as well as

interphase. The organization and dynamics of the domains are

affected by various factors, including cohesin (Nasmyth and

Haering, 2005; Shintomi and Hirano, 2010; Uhlmann, 2016)

and nucleosome-nucleosome interactions (Funke et al., 2016;

Kalashnikova et al., 2013). We suggest that our observed chro-

matin domains are the building blocks of chromosomes

throughout the cell cycle.
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Figure 1. PALM Imaging and Chromatin

Domain Analysis

(A) Histone H2B-PA-mCherry activation for live

PALM imaging and single-nucleosome tracking.

(B) Scheme of oblique illumination microscopy. Us-

ing a sheet light (green), only a thin optical layer

within the nucleus (red) was illuminated.

(C) Single-nucleosome (H2B-PA-mCherry) image of

the nucleus of a live HeLa cell.

(D) Live-cell PALM image of histone H2B (left) and

correlative Hoechst 33342 DNA staining of the same

live cell (right). Shown is a representative image of

ten PALM images.

(E) Live-cell PALM image of histone H2B (left) and

magnified images (right) from the boxed regions in

the image. Shown is a representative image of 20

PALM images. Scale bars, 1 mm.

(F) A simplified scheme for radial distribution func-

tion (RDF) (upper) and L-function (lower) analyses.

Shown are clustered (red spheres, top left) or

random (blue spheres, bottom left) particles around

the origin point (black sphere). RDF (top) and

L-function (bottom) plots of a random pattern (blue)

are �1 and 0, respectively. For more details, see

Figure S1F.

(G) RDF plots of interphase chromatin (black) and

random distribution plots (gray dotted line) (n = 75

cells).

(H) The L-function plot of interphase chromatin (red)

in live cells shows a curve with a peak at �110 nm

(i.e., �220 nm in diameter), and formaldehyde (FA)-

fixed interphase chromatin (blue) shows a peak at

�80 nm (i.e.,�160 nm in diameter), whereas the plot

of the random distribution model with the same

density dots (Figure S1G) as the PALM image is

almost zero (n = 75 live cells and n = 10 FA-fixed

cells).

See also Figure S1.
RESULTS

Chromatin Domain Structures in Live Cells
To combine PALM (Betzig et al., 2006; Rust et al., 2006) and

single-nucleosome tracking (Hihara et al., 2012; Nozaki et al.,

2013), we fused histone H2B with photoactivatable (PA)-

mCherry (Subach et al., 2009), which acquires fluorescence

upon UV laser stimulation, and expressed the fusion protein

in HeLa cells (Figure 1A; Figure S1A). The modified histone

H2B is incorporated into the nucleosomes throughout the

genome by histone replacement on a scale of hours (Kimura

and Cook, 2001). We used oblique illumination microscopy

for imaging of chromatin, which allowed us to illuminate a

thin area within a single nucleus (green lines in Figure 1B;

Tokunaga et al., 2008). Using this system, we found that a

relatively small number (�100/time frame (50 ms)/nucleus)

of H2B-PA-mCherry molecules were continuously and

stochastically activated even without UV laser stimulation

(Figure 1A). Clear, well-separated dots were detected (Fig-

ure 1C), with a single-step photobleaching profile (Figures
S1B and S1C), which suggested that each dot represents a sin-

gle H2B-PA-mCherry molecule in a single nucleosome. Every

time frame, �100 dots appeared upon activation and dimin-

ished �0.05–1 s (�1–20 frames) later by photobleaching (Movie

S1). In addition, stepwise salt washing of nuclei isolated from

the H2B-PA-mCherry-expressing cells confirmed that ectopi-

cally expressed H2B-PA-mCherry behaved similar to endoge-

nous H2B (Figure S1D), suggesting that the H2B-PA-mCherry

molecules were incorporated properly into the nucleosomes

in these cells.

We recorded the PA-mCherry-nucleosome dots in the inter-

phase chromatin at 50 ms/frame (�1,000 frames, 50 s total) in

live cells (Movie S1). The PA-mCherry dots were fitted with a

2D Gaussian function to estimate the precise position of the

nucleosome (the position determination accuracy is 20.02 nm;

see STAR Methods). Note that only the PA-mCherry nucleo-

somes in a thin layer of �200-nm thickness are detected, as

shown by the point spread function (PSF) of the PA-mCherry

signal measured in the cells (Figure S1E), excluding the projec-

tion effect from different focal distances.
Molecular Cell 67, 282–293, July 20, 2017 283



We first examined the spatial organization of nucleosomes

from the live-cell PALM images obtained this way, each of which

consisted of�80,000 nucleosome dots/optically sectioned focal

plane (�200-nm thickness) of the nucleus. Among the dots,

�20,000 are expected to be unique. Considering the thickness

of the optical section, the measured nuclear thickness

(�7 mm), and the expected total numbers of nucleosomes in

HeLa cells (�4.5 3 107 nucleosomes/HeLa nucleus), approxi-

mately 2% of the total nucleosomes in the section volume

were labeled and examined. These nucleosome dots appeared

to be highly clustered in live cells (Figures 1D and 1E). Higher

levels of clustering seemed to be located around the nuclear

periphery and edges of nucleoli (Figure 1E) or in regions with

stronger Hoechst (DNA) signals (Figure 1D).

To verify whether the nucleosomes were actually clustered

versus distributed randomly, we utilized a radial distribution

function (RDF) (Bohn et al., 2010). RDF or g(r) refers to the density

of the nucleosomes in the circular ring, at a distance between

r and r + Dr from the reference point, and thus gives a value

of�1 for the random distribution [(g)r�1] (Figure 1F; Figure S1F).

The measured RDF shown in Figure 1G showed a marked in-

crease of g(r) in the range of 0 to �250 nm, quantitatively sup-

porting the clustering or domain formation of nucleosomes in

live cells.

In the following analyses, we mainly used the L-function, L(r)

(Figure 1F; Figure S1F), because the plot of L-function (L(r)-r

versus r plot) gives a value of 0 for the random distribution, and

deviation from zero provides an intuitive measure of the size of

the cluster and the degree of accumulation (Figures 1F and 1H;

Figures S1F and S1G). Computational modeling for chromatin

condensation and decondensation states (Figure S7) suggests

that the L-function plot peak can provide good approximations

of the size and compaction state of the domains.

The L-function plot shown in Figure 1H shows a single peak at

�110 nm for normal live cells, suggesting that the typical size of

the domains is approximately 220 nm in diameter. In FA-fixed

cells, the L-function plot sharpened, corresponding to a domain

size of approximately 160 nm in diameter (Figure 1H). These re-

sults suggest that chromatin domain structures are observed in

both live and chemically fixed cells. Note that the measured

domain size in live cells became larger than that in FA-fixed cells

(Figure 1H), presumably because of the ‘‘motion blur effect’’ that

increased chromatin movement results in blurred structural

features.

Chromatin Domain Dynamics in Live Cells
Because our movie data (20 frames/s; Movie S1) also contained

information on nucleosomemovements in a thin optical layer, we

next examined the dynamics of the chromatin domains in live

cells basedonmovements of individual nucleosomes (Figure 2A).

We first tracked each nucleosome movement from 0 to �0.5 s

(�11 frames) using u-track software (Figure 2B; Jaqaman

et al., 2008). About 60 nm of nucleosome movement for 50 ms

was observed (Figure S2A), consistent with our previous studies

(Hihara et al., 2012). The plots of calculated mean square

displacement (MSD) were well fitted to an anomalous diffusion

model (Control in Figure 2C). Chemical fixation of the cells with

disuccinimidyl glutarate (DSG) and FA to crosslink nucleosomes
284 Molecular Cell 67, 282–293, July 20, 2017
severely suppressed the movements (Figure 2C), indicating that

most of the observed movement was derived from real nucleo-

some movements in live cells.

We then examined whether the observed movement of the in-

dividual nucleosomes reflects the dynamics of the domains to

which they belong. To address this question, we utilized DNA

replication foci domains with an average diameter of approxi-

mately 110–150 nm (Baddeley et al., 2010; Cseresnyes et al.,

2009; Markaki et al., 2010) composed of certain genomic DNA

regions labeled by incorporation of cyanine 3-deoxycytidine

triphosphate (Cy3-dCTP) during DNA replication (Figure 2D).

Consistent with previous publications (e.g., O’Keefe et al.,

1992), we observed, in labeled asynchronous cells, early and

mid-late replication foci patterns (Figure S2B). Because we

could not define the boundaries of the replication domains,

to investigate the dynamics of these foci, we tracked the centers

of foci in 30 randomly selected live cells and calculated theMSD,

which revealed that the dynamics of early replication domains

were higher than those of mid-late domains (Figure S2C).

We then compared the movements of the nucleosomes and

DNA replication domains (Figure 2E). Interestingly, the MSD

plot of nucleosome movement was similar to that of domain

movement (early and mid-late) (Figure 2F). To further pursue

the results from MSD, dual-color labeling and imaging of the

nucleosomes (H2B-Halo with green dye, R110) and replication

domains (red dye, Cy3) were performed (Figure 2E). Although

it was very rare to find situations in which a single H2B-R110

and a single Cy3-dCTP focus are close together, such 26 tra-

jectory sets revealed their correlated movements (Figure 2G;

left, Figure 2H), suggesting that the nucleosomes and their pu-

tative domains moved similarly (Figures 2G and 2H; Movies S2

and S3). On the other hand, the nucleosomes and domains

far away from them (a total of 28 trajectory sets) moved inde-

pendently (right, Figure 2H). Considering that the observed

movement of the replication domain represents centroid

movement of the fluorescent molecules distributed over the

domain (>10–20 dyes/domain; right, Figure 2E; STAR

Methods), our findings showed that, at least, most of the

nucleosomes form domains in live cells and that they move

coherently (Figure 2I). Therefore, as an approximation, we

used nucleosome movement to represent domain dynamics

in subsequent analyses.

Heterochromatin-Rich Regions Show Less Movement
In addition to MSD analysis, which calculates the ensemble

average of domain movement, we integrated the movement

data on a 2D plane to visualize the magnitude of chromatin

domain dynamics as a 2D heatmap (‘‘chromatin heatmap’’) (Fig-

ures 2J and 2K). Here, larger domain movement appears as

more ‘‘red’’ (or hot), and smaller movement appears as more

‘‘blue’’ (or cold) pixels (Figure 2J). This heatmap provides spatial

domain dynamics in the whole nucleus of a live cell (Figure 2K).

On the heatmap (Figure 2K), the nuclear periphery (box 2) and

edges of nucleoli (box 3), which were presumably heterochro-

matin-rich regions (Lemaı̂tre and Bickmore, 2015), showed less

movement.

Consistently, when we focused on nuclear bottom surfaces

(Shinkai et al., 2016), the L-function plot was higher than that in



Figure 2. Visualization of Chromatin Domain

Dynamics

(A) Scheme for visualization of chromatin domain

dynamics based on single-nucleosome tracking.

(B) Representative tracked trajectories of single

nucleosomes.

(C) Mean square displacement (MSD) plots of sin-

gle nucleosomes in interphase chromatin of live

(black), FA-fixed (red), and disuccinimidyl glutarate

(DSG)-fixedHeLa cells (blue) from 0–0.5 s. For each

sample, n = 15–75 cells.

(D) Image of DNA replication foci labeled by Cy3-

dCTP in the nucleus of a live HeLa cell.

(E) Scheme for dual-color labeling and imaging of

the nucleosomes (left) with H2B-Halo-R110-incor-

porated (green dye) and Cy3 (red dye)-incorpo-

rated DNA replication domains (right).

(F) MSD plots of DNA replication domains (red,

n = 30 cells) compared with those of nucleosomes

(black, n = 75 cells) from 0–0.5 s.

(G) A representative example showing correlative

movements of nucleosomes and their putative

domains (see also Movies S2 and S3).

(H) Representative trajectories of correlative (left)

and non-correlative (right) movements between the

nucleosomes (green) and domains (red).

(I) A model showing that nucleosomes form a

domain and move coherently (see also Figures 7A

and 7C).

(J) Scheme of chromatin heatmaps. In the heat-

map, small movements are shown in blue, and

large movements are shown in red.

(K) The chromatin heatmap for 50 ms in a live HeLa

cell (left) and magnified images (right) from the

boxed regions in the heatmap.

See also Figure S2.
nuclear interiors, suggesting a clustering of domains at the

nuclear periphery (Figure S2D). On nuclear surfaces, the

domain dynamics slowed down (Figure S2E), and the chromatin

heatmap turned more blue (Figure S2F), probably because of

the tethering of the domains to inner nuclear membrane

structures (Lemaı̂tre and Bickmore, 2015). In good agreement,

the dynamics of mid-late replication domains, which are

heterochromatin-rich regions around the nuclear periphery

(Ryba et al., 2010), were lower than those of the early domains

(Figure S2C).

Chromatin Domains Are Organized by Nucleosome-
Nucleosome Interactions and Cohesin Complexes
We performed a series of perturbation experiments to determine

the types of biochemical and physicochemical factors involved
Mo
in domain formation and dynamics. We

first examined the role of nucleosome-

nucleosome interactions by treatment

with the histone deacetylase (HDAC) in-

hibitor trichostatin A (TSA). Inhibition of

HDAC by TSA increases histone tail acet-

ylation, including lysine 16 of histone H4

(Figure S3A). Histone tail acetylation by

TSA treatment led to global decondensa-
tion of chromatin texture (Görisch et al., 2005; Ricci et al.,

2015), presumably by weakening the H3 and H4 tail binding to

the neighboring nucleosome and subsequent inhibition of nucle-

osome-nucleosome interactions (Kalashnikova et al., 2013).

Consistent with this notion, TSA-treated cells exhibited more

distributed nucleosome signals throughout the nucleus than

control cells (Figure 3A), whereas the nuclear volumes did not

change (Figure S3B). The peak position and height of the L-func-

tion plot by TSA treatment decreased (Figure 3B), which showed

that increased histone acetylation by TSA treatment decon-

densed the chromatin domains (Figure 3B). Histone acetylation

also led to increased dynamics (Figures 3C and 3D; Figure S4A),

presumably because decondensation of the chromatin domains

made the chromatin more flexible and mobile. Importantly, after

TSA treatment, FA-fixed cells still showed a decrease in the
lecular Cell 67, 282–293, July 20, 2017 285



Figure 3. Involvement of Nucleosome-Nucle-

osome Interactions and Cohesin in Domain

Formation and Dynamics

(A) PALM images of interphase chromatin based on

H2B-PA-mCherry in live HeLa cells. From left to

right, shown are a control (untreated) cell, a tri-

chostatin A (TSA)-treated cell, and a RAD21

knockdown (KD) cell.

(B) L-function plots of chromatin with the same con-

ditions as in (A). For each condition, n = 25–75 cells.

(C) Chromatin heatmaps for 50 ms in a live HeLa cell

(control), TSA-treated cell, and RAD21-KD cell.

(D) MSD plots of the domains in HeLa RAD21-KD

cells (red), TSA-treated cells (blue), and control cells

(black) from 0–0.5 s. For each condition, n = 25–75

cells. For plots with SD, see Figure S4A.

(E) Fluorescent image of RAD21-mClover in live

HCT116cells (left) andcells treatedwith auxin for 1 hr

(right).

(F andG) L-function plots (F) andMSD (G) forRAD21-

mAID-Clover HCT116 cells treated with auxin (red)

and without auxin (blue). For each condition, n =

12–15 cells.

See also Figure S3.
L-function plot (Figures S3C and S3D), excluding the possibility

that the observed decondensation effect of the treatment was

due to increased movement of the domains (i.e., the motion

blur effect). These results suggest that nucleosome-nucleosome

interactions contribute to the formation of chromatin domains

and restrict their dynamics (Figures 2I, 7A, and 7B), whereas his-

tone acetylation may lead to the recruitment of other chromatin

remodeling complexes and transcription factors, as well as

further decondensation. Our findings also suggest that chro-

matin domain organization and dynamics can be controlled by

histone modifications.

We next investigated whether the cohesin complex is involved

in chromatin domain formation and dynamics. Cohesin can cap-

ture chromatin fibers within its ring structure, thereby forming

loops and subsequent higher-order chromatin structures (Nas-

myth and Haering, 2005; Shintomi and Hirano, 2010; Uhlmann,

2016). When the cohesin subunit RAD21 was depleted (Fig-

ure S3E) by small interfering RNA (siRNA) (Wendt et al., 2008),

the nucleosomes were distributed more uniformly in the nucleus,

with higher mobility, causing decondensation of the domains

(Figures 3A–3D; Figure S4A). The peak position and height of

the L-function plot decreased to similar levels as those seen
286 Molecular Cell 67, 282–293, July 20, 2017
with TSA treatment (Figure 3B). In addition,

knockdown (KD) of the cohesin loader

NIPBL (Figure S3F; Zuin et al., 2014b) had

similar effects as KD of RAD21 (Figures

4A and 4B; Figure S5C).

Interestingly, treatment with both TSA

and RAD21-KD resulted in more marked

effects (Figures S4B and S4C), suggest-

ing their cooperation. Conversely, neither

treatment was effective on chromatin

domains around the nuclear surface/pe-

riphery (Figure S4D), which is probably
due to tethering of the domains to the inner nuclear membrane

structures (Lemaı̂tre and Bickmore, 2015).

To exclude the possibility that prolonged treatment with

RAD21 or NIPBL siRNA (60 or 72 h) had various indirect effects

on chromatin structure, we performed imaging of human

HCT116 cells rapidly depleted of RAD21 protein using auxin-

inducible degron (AID) technology (Natsume et al., 2016). One

hour after auxin addition, RAD21 had disappeared (Figure 3E),

and, consistent with the siRNA results, the domains had decon-

densed and their dynamics increased (Figures 3F and 3G). This

strongly supports the critical function of cohesin in chromatin

domain organization and dynamics (for a model, see Figures

7A and 7B).

We then examined other protein factors that could affect

chromatin structure and dynamics. KD of CCCTC-binding

factor (CTCF) (Figure S5A; Wendt et al., 2008), which is

also involved in loop formation, together with cohesin, did

not change the L-function or MSD plots (Figures 4A and 4B;

Figure S5C). Simultaneous KD of both CAP-H2 and G2 in

the condensin II complex (Figure S5B), which is localized

within interphase nuclei and functions in sister chromatid reso-

lution during S phase (Ono et al., 2013), only caused slight



Figure 4. Various Perturbation Experiments

on Domain Formation and Dynamics

(A and B) L-function (A) and MSD (B) plots of

chromatin in NIPBL-KD cells (red), CAP-H2/G2-

KD cells (green), CTCF-KD cells (orange), 5,6-

Dichloro-1-b-D-ribofuranosylbenzimidazole (DRB)-

treated cells (blue), and control cells (black). For

each condition, n = 25–75 cells.

(C) Left: correlative immunostaining with anti-RNA

Pol II phospho-Ser5 antibody to mark active RNA

Pol II on the same H2B-PA-mCherry-expressing cell

after PALM imaging. Shown is a representative im-

age of eight cells. Another example is provided in

Figure S5D. Also shown are overlay images of PALM

(green) and Pol II phospho-Ser5 staining (red). Right:

magnified image from the white line region in the left

merge image. Scale bar, 500 nm. The mutually

exclusive pattern of chromatin (green) and active

Pol II (red) on the white line is also indicated by an

intensity line scan.

(D and E) L-function (D) and MSD (E) plots of

chromatin in hypertonic cells (blue), hypotonic

cells (red), ATP-depleted cells (orange), cells ob-

served at room temperature (RT, 18�C) (green), and
control cells (black). For each condition, n = 20–75

cells.

See also Figure S5.
changes in L-function and MSD plots (Figures 4A and 4B;

Figure S5C).

Transcription Inhibition Does Not Affect Domain
Structure but Increases the Dynamics
Furthermore, to examine the role of the transcriptional process

in domain structure and dynamics, we treated cells with 5,6-

Dichloro-1-b-D-ribofuranosylbenzimidazole (DRB), which is a

selective inhibitor of transcription elongation by RNA polymer-

ase II (RNA Pol II) in eukaryotic cells (Kwak and Lis, 2013)

and dissociates the RNA Pol II elongation complex (Kimura

et al., 2002). Although this treatment markedly suppressed

global RNA synthesis in the cells (Figure S5E), it did not alter

domain formation (Figure 4A; Figure S5C). However, DRB treat-

ment increased the domain dynamics (Figure 4B), suggesting

that, although RNA Pol II activity is not directly involved

in domain maintenance, some domains are stabilized during
M

transcriptional elongation (for a model,

see Figure 7A). Dissociation of the elonga-

tion complexes by DRB treatment (Kimura

et al., 2002) may release the constraints

on the domains and increase the domain

dynamics.

Consistent with this finding, correlative

immunostaining of the same cells after

live-cell PALM imaging with an active

RNA Pol II marker, anti-phosphorylated

serine 5 antibody (Stasevich et al.,

2014), revealed that the active RNA Pol II

clusters were often localized outside

of the chromatin domains (Figures 4C
and 7A; Figure S5D), in accordance with some previous reports

(Markaki et al., 2010).

Physicochemical Factors Are Also Involved in
Chromatin Domain Formation and Dynamics
Next we turned our attention to physicochemical factors of

chromatin domain formation and dynamics. We first changed

the osmotic pressure, which could be related to intracellular

cations and macromolecular crowding conditions (Albiez

et al., 2006). Hypo-osmotic conditions with dilute medium

(�140 mOsm instead of the normal �290 mOsm) led to

decondensation of domains (Figure 4D; Figure S5C), although

this treatment did not alter the domain dynamics (Fig-

ure 4E), suggesting that the molecular crowding force and

cations contribute to the domain structure but not dynamics

(see Discussion). On the other hand, hypertonic treatment

(�570 mOsm) had the opposite effect and caused chromatin
olecular Cell 67, 282–293, July 20, 2017 287



Figure 5. Domain Structure in Mitotic Chro-

mosomes

(A and B) L-function (A) and MSD (B) plots of chro-

matin during various stages of the cell cycle. Times

after mitotic release are shown; asynchronous

control, black. For flow cytometry data, see Fig-

ure S6A. For each condition, n = 25–75 cells.

(C) PALM image of mitotic chromosomes based on

H2B-PA-mCherry in FA-fixed HeLa cells.

(D) L-function plots of chromatin in FA-fixed HeLa

mitotic chromosomes (n = 20 cells).

(E) PALM images of mitotic chromosomes based on

H2B-PA-mCherry in live Indian muntjac DM cells.

(F) L-function plots for mitotic live and FA-fixed DM

cells demonstrate that the nucleosomes formed

compact chromatin domains during muntjac cell

mitosis. For live and fixed cells, n = 11 and 16 cells,

respectively.

See also Figure S6.
hypercondensation (Figure 4D; Figure S5C) along with reduced

dynamics (Figure 4E).

ATP depletion of cells treated with sodium azide and 2-deoxy-

glucose (Figure S5F) condensed the chromatin domains and

slightly decreased the dynamics (Figure 4D and 4E; Figure S5C)

(see Discussion). Reduction of the temperature of the cells from

37�C to 18�C caused a marked chromatin domain slow-down

(Figure 4E), although the domain organization did not change

significantly (Figure 4D; Figure S5C). Importantly, these findings

regarding the physicochemical factors suggest that the struc-

tural and dynamic aspects of the domains can be well

separated, even in live cells, and may also be critical physical

parameters for computational modeling of chromatin and chro-

mosomes (Cheng et al., 2015; Ozer et al., 2015; Shinkai

et al., 2016).
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Similar Domain Structures Are
Observed in Mitotic Chromosomes
We investigated the behavior of the chro-

matin domains during the cell cycle.

A time course experiment for PALM imag-

ing was performed using synchronized

HeLa cells that were released from mitotic

arrest and verified by flow cytometry (Fig-

ure S6A). We observed similar chromatin

domains and dynamics from G1, S, and

G2 phases, suggesting that the chromatin

structure does not change significantly

throughout interphase (Figures 5A and 5B).

We next focused on mitosis. Chromo-

some fluctuation, which reflects chromo-

some congression (Iemura and Tanaka,

2015), is prominent in live mitotic HeLa

cells; therefore, we first examined fixed

cells and found chromatin domain struc-

tures in mitotic chromosomes. The PALM

images demonstrated highly clustered

nucleosomes in the FA-fixed mitotic chro-

mosomes (Figure 5C), which were also
revealed by RDF analysis (Figure S6B). L-function plots demon-

strated that the fixed mitotic chromosomes had a notable peak

with a diameter of �140 nm (Figure 5D), which is comparable

with that of interphase domains (Figure 1H).

We then studied mitotic chromosomes using Indian muntjac

DM cells (Hihara et al., 2012; Manders et al., 1999), which have

large chromosomes and are less mobile and advantageous for

this type of analysis. The mitotic chromosomes in fixed and

live muntjac cells had peak diameters of �140 nm and

�200 nm, respectively (Figures 5E and 5F; Figure S6C). A heat-

map of muntjac chromosomes showed ‘‘non-uniform’’ move-

ments of nucleosomes (Figure S6D). Taken together, these

results suggest the existence of chromatin domain structures

in mitotic chromosomes in live cells. Notably, the values ob-

tained inmitotic chromosomes are in good agreement with those



Figure 6. Chromatin Domain Structure and

Dynamics in Mouse ESCs

(A) PALM images and chromatin domain heatmaps

for embryonic stem cells (ESCs) and ESC-LIF ESCs

that were cultured in medium without the differenti-

ation inhibitory factor (leukemia inhibitory factor

[LIF]) for 5 days.

(B and C) L-function (B) and MSD (C) plots of chro-

matin in ESCs (red) and ESC-LIF (blue). n = 35–40

cells.

(D) Immunostaining of ESCs and ESC-LIF cells

incubated with anti-Sox2 antibody and DAPI.

(E) Live-cell PALM image (top left) and chromatin

heatmap (top right) in the chromocenter (box) of

an ESC, showing chromatin condensation and

decreased domain dynamics in the region. The

chromocenter region was confirmed by correlative

immunostaining with anti-H3K9me3 antibody (bot-

tom left) and DAPI staining (bottom right) after PALM

imaging. Scale bar, 5 mm.

(F) Effect of differentiation on nuclear volume.
in interphase cells (Figure 1H). Our findings also suggest that the

chromatin domainsmay be retained throughout the cell cycle (for

a model, see Figure 7A).

Chromatin Domains Become More Apparent with Cell
Differentiation
To study the behavior of chromatin domains during cell differen-

tiation, we established mouse embryonic stem cells (ESCs)

expressing H2B-PA-mCherry and performed live-cell PALM im-

aging (Figure 6A). Interestingly, the L-function plot in ESCs was a

rather flat curve (Figure 6B), suggesting that ESCs havemore de-

condensed chromatin than HeLa cells, that the domain structure

may not be well-defined, and that the dynamics are greater (Fig-

ures 6A and 6C), consistent with previous reports (Meshorer and

Misteli, 2006; Ricci et al., 2015). Chromatin heatmap analysis

revealed higher domain dynamics in ESCs than in HeLa cells

(Figures 2K and 6A). On the other hand, the nuclear periphery

and the chromocenters (pericentromeric heterochromatin),

which were confirmed by correlative immunostaining of the

heterochromatin marker trimethylation of histone H3 Lys9

(H3K9me3), showed reduced domain dynamics (box in Fig-

ure 6E), consistent with the results obtained from nuclear sur-

faces (Figures S2E and S2F).
M

Because the rather ambiguous chro-

matin domains and ‘‘hot’’ chromatin prop-

erties of the ESCs may be related to their

pluripotency, we induced embryoid body

(EB) formation by depletion of leukemia

inhibitory factor (LIF) from ESCs. The

pluripotent marker Sox2 was not detect-

able in the cells, ensuring differentiation

toward EBs (ESC-LIF in Figure 6D). After

differentiation, the nuclear volumes did

not change (Figure 6F), but the L-function

plots showed a sharper peak (ESC-LIF in

Figure 6B), indicating that the chromatin

domains had become more defined. MSD
analysis also showed that the domain dynamics decreased,

with more blue color observed in the heatmap, suggesting

greater dynamic properties of chromatin in pluripotent cells (Fig-

ures 6A and 6C). Our findings strengthen the concept of chro-

matin plasticity in pluripotent cells (Meshorer and Misteli, 2006;

Ricci et al., 2015).

DISCUSSION

In the present study, we not only revealed chromatin structures

at high resolution in live cells but also their dynamic aspects,

which can regulate chromatin accessibility in a manner highly

related to genome function and which were not explored

previously (e.g., Ricci et al., 2015; Boettiger et al., 2016). We

demonstrated that nucleosomes form compact domains and

that their constituent nucleosomes move coherently (Fig-

ure 7A). This suggests that chromatin domains are condensed

structures like ‘‘liquid drops’’ rather than loose bundles of fibers

or extended loops (Figure 7A; Maeshima et al., 2015). The

average size of our domain structures (Figure 7A) seems to

be much larger than that of heterogeneous groups of nucleo-

somes (‘‘clutches’’ or ‘‘nanodomains’’), which were revealed

by Ricci et al. (2015) using higher-resolution imaging mainly in
olecular Cell 67, 282–293, July 20, 2017 289



Figure 7. Chromatin Domain Structure Model

(A) Summary. In interphase (left), various compact

domains are formed by cohesin and other factors,

including nucleosome-nucleosome interactions.

Cohesin folds the domain itself (enlarged domain in

the circle), possibly via loop formation. Some chro-

matin domains are stabilized by transcriptional

elongation machinery (gray spheres). Release of

cohesin and transcriptional machinery increase

domain dynamics. During mitosis, the chromatin

domains are assembled, presumably by condensin

(and topoisomerase IIa) and other forces, to obtain a

rod-like shape.

(B) A simplified model of the effects in cohesin-

KD (left) and TSA-treated (right) domains. In the

cohesin-KD domain, global folding of nucleosome

fibers is missing, whereas local nucleosome-nucle-

osome interactions are impaired in the TSA-treated

domain.

(C) An ‘‘in silico domain’’ model. The compact do-

mains are composed of 646 (left, corresponding to

0.50 mM) and 1,000 (right, 0.78 mM) nucleosomes in

the domains with a diameter of 160 nm. The nucle-

osomes were randomly packed in the domains.

Note that these are highly simplified models and

have no linker DNAs, linker histones, or other chro-

matin proteins.
methanol/ethanol-fixed mammalian cells. Ricci et al. (2015)

might focus on substructures of the domains.

The compact domains are organized by a combination of

factors, including cohesin and nucleosome-nucleosome interac-

tions. Because it was recently reported that the nucleosome-

nucleosome interaction is quite weak (��1.6 kcal/mol) (Funke

et al., 2016), the activity of other factors, such as cohesin, could

bring the nucleosome fibers together to form the compact

domain (Figure 7B). This compact structure also reminded us

of the large chromatin structures formed in vitro in a salt-depen-

dent manner (Hansen, 2002; Maeshima et al., 2016b), which is

consistent with the finding that the domain structures are

sensitive to osmotic pressure changes related to intracellular

cationic conditions (Figure 4D; Figure S5C). Notably, the

compact feature of the domains can provide higher-order regu-

lation of various DNA transaction reactions because the domains
290 Molecular Cell 67, 282–293, July 20, 2017
likely hinder the accessibility of protein

complexes mediating the reactions to the

inner core of chromatin domains (Mae-

shima et al., 2015).

It would be intriguing to estimate how

many nucleosomes are included in the

observed compact domains and to

compare them with TADs and contact do-

mains. If we assume that nucleosomes

are 10-nm-diameter spheres, and that the

spheres occupy 25% of the space in the

domains (corresponding to 0.78 mM), FA-

fixed domains with a peak diameter of

160 nm (Figure 1H) are estimated to

contain 1,000 nucleosomes, covering an
�200-kb genomic region (Figure 7C). An occupancy of 15.8%

in the domain (0.50 mM) should contain 646 nucleosomes,

covering an �130-kb genomic region (Figure 7C). These esti-

mated genomic sizes in the domain are in good agreement

with that of contact domains recently identified by Rao et al.

(2014) (median size, �185 kb) and may be smaller than TADs

(average size, �800 kb) (Dekker and Heard, 2015). The key role

of cohesin in TAD formation (Sofueva et al., 2013; Zuin et al.,

2014a) is also true for the domains observed in our study using

live cells. On the other hand, although the Hi-C method did not

detect notable TAD structures in mitotic chromosomes (Nau-

mova et al., 2013), we found that they have chromatin domain

structures (Figures 5C–5F; Figures S6B and S6C). In addition,

although TAD structures can be observed in mouse ESCs

(Nora et al., 2012), our domains are less prominent (Figure 6A),

consistent with the reportedly more open structures in ESCs



(Ricci et al., 2015). Taken together, the observed domains seem

to share some, but not all, of the properties of TADs or contact

domains.

The domain dynamics seemed to be temperature-dependent,

and temperature appeared to be the parameter that most

affected domain dynamics (Figure 4E). These observations sug-

gested that Brownian motion essentially drives the domain dy-

namics. On the other hand, although ATP depletion (Figure S5F)

slightly decreased the domain dynamics (Figure 4E), we could

not conclude that the movement was energy-dependent

because chromatin condensation was also observed simulta-

neously (Figure 4D; Figure S5C), probably due to the re-

ported rapid rise in Ca2+ upon ATP depletion (Martin et al.,

2007). Systematic KD analyses of ATP-dependent chromatin

proteins, such as remodelers, will provide insight into this issue.

Interestingly, the domain dynamics were increased by tran-

scription inhibition (Figure 4B). This was the opposite of what

we expected. During transcriptional elongation, some domains

appear to be stabilized by the RNA Pol II elongation machinery

(Figure 7A). This finding is in agreement with a previous report

that a specific genomic locus was less dynamic when actively

transcribed (Ochiai et al., 2015) and could also be compatible

with the transcription factory model (Papantonis and Cook,

2013) or the 1-Mb domain/interchromatin domain model (Mar-

kaki et al., 2010).

Our observation of chromatin domain structures in mitotic

chromosomes (Figure 7A) is consistent with the finding that

DNA replication domains are retained stably during the cell

cycle, including during mitosis (Albiez et al., 2006; Manders

et al., 1999), and could also be compatible with other proposed

large-scale structures such as the chromonema fiber (Kireeva

et al., 2004). The retention of chromatin domains throughout

the cell cycle provides further advantages for genome functions.

First, the chromatin domains can function as ‘‘building blocks’’ of

chromosomes, and chromosome assembly and disassembly

processes become smoother, presumably with involvement of

condensin, topoisomerase IIa, and other factors (Hirano, 2012;

Liang et al., 2015; Ohta et al., 2011; Thadani et al., 2012;

Figure 7A). Second, the memories of epigenetic markers in

these building blocks could be retained easily throughout the

cell cycle.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-RAD21 Millipore Cat#05-908

Rabbit polyclonal anti-CTCF Millipore Cat#07-729

Mouse monoclonal anti-NIPBL Santa Cruz Cat#sc-374625

Rat monoclonal anti-CAP-H2 Sigma-Aldrich Cat#SAB4200655-100UL

Rabbit polyclonal anti-Sox2 Abcam Cat#ab97959

Mouse monoclonal anti-H3K9me3 Hiroshi Kimura Lab (Tokyo

Institute of Technology)

N/A

Mouse monoclonal anti-Polymerase II Ser 5 ph Hiroshi Kimura Lab (Tokyo

Institute of Technology)

N/A

Rabbit polyclonal anti-Histone H2B upstate Cat#07-371

Rabbit polyclonal anti-RFP MBL Cat#PM005

Chemicals, Peptides, and Recombinant Proteins

Formaldehyde solution Wako Cat#064-00406

Trichostatin A (TSA) Wako Cat#203-17561

Sodium azide Sigma-Aldrich Cat#S2002-25G

2-Deoxy-D-glucose Sigma-Aldrich Cat#D8375-1G

5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole Sigma-Aldrich Cat#D1916-10MG

3-indoleacetic acid Nacalai Cat#19119-61

Nocodazole Wako Cat#140-08531

Hoechst 33342 Dojindo Cat#H342

DAPI Roche Cat#10236276001

Lipofectamine RNAiMAX Transfection Reagent Invitrogen Cat#13778-075

HaloTag R110 Direct Ligand Promega Cat#G3221

Cy3-dCTP GE Cat#PA53021

Poly-L-lysine Sigma-Aldrich Cat#P1524-500MG

Blasticidin S Hydrochloride Wako Cat#029-18701

G418 ENZ Cat#ALX-380-013-G001

FxCycle Far Red Stain Invitrogen Cat#F10348

TetraSpeck beads (0.1mm) Molecular Probes Cat#T7279

Di(N-succinimidyl) glutarate (DSG) Sigma-Aldrich Cat#80424-50MG-F

Critical Commercial Assays

Effectene Transfection Reagent QIAGEN Cat#301425

Click-iT EdU Alexa Fluor 488 Flow cytometry assay Kit Invitrogen Cat#C10425

Click-iT RNA Alexa Fluor 594 Imaging Kit Invitrogen Cat#C10330

Cell ATP Assay Regent Toyo B Cat#300–15363

Hyglomycin B Invitrogen Cat#10687010

Experimental Models: Cell Lines

Human: HeLaS3 (Maeshima et al., 2006) N/A

Mouse: Embryonic stem cell (E14Tg2a) Ichiro Hiratani Lab N/A

Indian Muntjac: DM Hihara et al., 2012 N/A

Human: HCT116,RAD21-mAID-mClover,OsTIR1 clone12 Natsume et al., 2016 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Primer: BamHI-PAmCherry-Fw: CGCGGATCCACCGGTCG

CCACCATGGTGAGCAAGGG

This paper N/A

Primer: NotI-PAmCherry-Rv: AAGGAAAAAAGCGGCCGCTT

ACTTGTACAGCTCGTCCA

This paper N/A

Primer: mRFP-H2B-Nh21-Fw: CTAGCTAGCATGCCAGAG

CCAGCGAAGTCTG

This paper N/A

Primer: Halotag-NotI-Fw(1st): TGGAGGCTCAGGAGGTGGC

GGGTCTGGATCCGAAATCGGTACTG

This paper N/A

Primer: Halotag NotI-Rv: ATAAGAATGCGGCCGCTTAAC

CGGAAATCTCCAGAG

This paper N/A

Primer: Halotag-NotI-Fw(2nd): ATAAGAATGCGGCCGCTA

AGTGGCGGTGGAGGCTCAGGAGGTGGCG

This paper N/A

Primer: EcoRV-EF1a-Fw: AAAGATATCGGTCTTGAAAGG

AGTGCCTCG

This paper N/A

Primer: EcoRV-BGH polyA-Rv: AAAGATATCAAGCCATA

GAGCCCACCGCAT

This paper N/A

Primer: XhoI-H2B-Fw: CCGCTCGAGATGCCAGAGCCA

GCGAAGTC

This paper N/A

Primer: XhoI-PAmCherry-Rv: CCGCTCGAGTTACTTGTA

CAGCTCGTCCATGCCG

This paper N/A

siRNA control: Low GC content oligo Invitrogen Cat#45-2002

siRNA targeting sequence NIPBL: (Zuin et al., 2014b) N/A

sense: 50-GCAUCGGUAUCAAGUCCCAUUtt-30

antisense: 50-AAUGGGACUUGAUACCGAUGCtt-30

siRNA targeting sequence RAD21 (Wendt et al., 2008) N/A

sense: 50-CAGCUUGAAUCAGAGUAGAGUGGAA-30

antisense: 50-UUCCACUCUACUCUGAUUCAAGCUG-30

siRNA targeting sequence CTCF (Wendt et al., 2008) N/A

sense:50-GCGCUCUAAGAAAGAAGAUUCCUCU-30

antisense:50-AGAGGAAUCUUCUUUCUUAGAGCGC-30

siRNA targeting sequence CAP-H2 (Ono et al., 2013) N/A

sense: 50-CAGGCCCUUGAUUUCAUCUCUGGAA-30

antisense: 50-UUCCAGAGAUGAAAUCAAGGGCCUG-30

siRNA targeting sequence CAP-G2 (Ono et al., 2013) N/A

sense: 50-AGCCCUACUGGAAUGUGUUAUUAUA-30

antisense- 50-UAUAAUAACACAUUCCAGUAGGGCU-30

Recombinant DNA

pPAmCherry-N1 Clontech Cat#632584

pH2B-PA-GFP EUROSCARF Cat#P30499

pEF5/FRT/V5-DEST Gateway Vector Invitrogen Cat#V602020

pFC14A HaloTag CMV Flexi Vector Promega Cat#G965A

pEF1a-H2B-PAmCherry-FRT This paper N/A

pEF1a-H2B-HaloTag-FRT This paper N/A

pPB-EF1a-H2B-PA-mCherry-PGKneo This paper N/A

pPB-CAG-IB-H2B-PA-mCherry This paper N/A

pPB-PGKneo Sanger Institute (MTA) N/A

Junji Takeda Lab

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pPB-CAG-IB Sanger Institute (MTA) N/A

Junji Takeda Lab

pCMV-hyPBase Sanger Institute (MTA) N/A

Software and Algorithms

u-track (Jaqaman et al., 2008) http://www.utsouthwestern.edu/

labs/danuser/software/#utrack_anc

KaleidaGraph Synergy Software http://www.synergy.com/wordpress_

650164087/

Fiji Fiji http://fiji.sc/

ImageJ ImageJ https://imagej.nih.gov/ij/

TrackMate ImageJ https://imagej.net/TrackMate

Particle Tracker ImageJ http://imagej.net/Particle_Tracker

R R https://www.r-project.org/

vec2dtransf CRAN https://cran.r-project.org/web/

packages/vec2dtransf/index.html

MetaMorph Molecular Device https://www.moleculardevices.com/

systems/metamorph-research-imaging/

metamorph-microscopy-automation-

and-image-analysis-software

Deposited Data

Raw imaging data This paper Mendeley data: http://dx.doi.org/10.17632/

wr6zsbmshp.1
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture
The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (HeLa) or 15% (DM) fetal bovine

serum (FBS) at 37�C in 5% CO2. HCT116 cells were cultured in McCoy’s 5A (Modified) medium supplemented with 10% FBS and

2 mM L-glutamine. E14Tg2a ESCs were cultured in Glasgow minimum essential medium (GMEM) supplemented with 10% FBS,

1% non-essential amino acids, 1 mM sodium pyruvate solution, 2 mM L-glutamine, 1 mM 2-mercaptoethanol, and 100 U/mL LIF.

For the LIF(–) condition, ESCs were cultured for 5 days after withdrawal of LIF.

METHOD DETAILS

PALM imaging
PALM imaging was performed using the inverted Nikon Eclipse Ti microscope with a 100 mW Sapphire 561 nm laser (Coherent) and

sCMOS ORCA-Flash 4.0 camera (Hamamatsu Photonics). Cells were exposed to the excitation laser through an objective lens

(100 3 PlanApo TIRF, NA 1.49; Nikon). The images were taken using an oblique illumination system with a TIRF unit (Nikon) to illu-

minate a limited thin area in the cell nucleus. Movies of 1,000 sequential frames were acquired using MetaMorph software (Molecular

Devices) in 50 ms under continuous illumination. To maintain cell culture conditions (37�C, 5% CO2, and humidity during imaging), a

live-cell chamber and GM-8000 digital gas mixer (Tokai Hit) were used. For PALM imaging, all cell types were plated onto glass-

bottomed dishes (Iwaki) treated with polylysine. Before microscopy imaging, the medium was replaced with DMEM (no Phenol

Red and 10% or 15% FBS). For PALM imaging of the chemically fixed interphase cells, we used DAPI LED light (Lumencor) for

50 ms to activate PA-mCherry. To measure the depth of the focal plane in the oblique illumination system, we observed H2B-PA-

mCherry in fixed HeLa cells using a Piezo stage (Mad City Labs) at 50 nm/frame (z direction) without the Perfect Focus system

and created the kymograph of single H2B-PA-mCherry.

Plasmid construction
Construction of pEF1a-H2B-PAmCherry-FRT was performed as follows. The PA-mCherry sequence with the addition of BamHI and

NotI sites to the ends of pPA-mCherry-N1 (Clontech) was amplified using the following primer pair: 50-CGCGGATCCACCGGTCGC

CACCATGGTGAGCAAGGG-30 and 50-AAGGAAAAAAGCGGCCGCTTACTTGTACAGCTCGTCCA-30. The amplified PA-mCherry

fragment was replaced with the PA-GFP region of the pH2B-PA-GFP vector (EUROSCARF, Ellenberg lab) via BamHI and NotI sites.
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The H2B-PA-mCherry sequence was then amplified using the following PCR primer pair: 50-CTAGCTAGCATGCCAGAGCCAGC

GAAGTC-30 and 50-AAGGAAAAAAGCGGCCGCTTACTTGTACAGCTCGTCCA-30. This fragment was inserted into the EcoRV site

of the pEF5/FRT/V5-DEST Gateway Vector (Invitrogen) to obtain pEF1a-H2B-PAmCherry-FRT.

Construction of pEF1a-H2B-Halotag-FRT was performed as follows. To generate a long linker sequence, the Halotag sequence on

pFC14A HaloTag CMV Flexi Vector (Promega) was amplified twice, first using the primer pair 50-TGGAGGCTCAGGAGGTGGCG

GGTCTGGATCCGAAATCGGTACTG-30 and 50- ATAAGAATGCGGCCGCTTAACCGGAAATCTCCAGAG-30 and again using the

following primer pair with NotI sites added to the ends: 50-ATAAGAATGCGGCCGCTAAGTGGCGGTGGAGGCTCAGGAGGTG

GCG-30 and 50- ATAAGAATGCGGCCGCTTAACCGGAAATCTCCAGAG-30. The amplified HaloTag fragment was replaced with the

PA-mCherry region of the pH2B-PA-mCherry vector (described above) via NotI sites to create the pH2B-HaloTag vector. Similar

to H2B-PA-mCherry, this fragment was amplified and inserted into the EcoRV site of the pEF5/FRT/V5-DEST Gateway Vector

(Invitrogen) to obtain the pEF1a-H2B-HaloTag-FRT vector.

To construct pEF1a-H2B-PAmCherry in the PiggyBac vector (pPB-EF1a-H2B-PA-mCherry-PGKneo), the H2B-PA-mCherry

sequence was amplified from pEF1a-H2B-PA-mCherry using the following primer pair: 50-AAAGATATCGGTCTTGAAAGGAGTG

CCTCG-30 and 50-AAAGATATCAAGCCATAGAGCCCACCGCAT-30. The amplified fragment was digested by EcoRV and then in-

serted into the EcoRV site of the pPB-PGKneo vector.

Construction of pPB-CAG-IB-H2B-PA-mCherry was performed as follows: the H2B-PA-mCherry sequence with the addition of

XhoI sites to the ends of pEF1a-H2B-PA-mCherry-FRT was amplified using the following primer pair: 50- CCGCTCGAGATGCCA

GAGCCAGCGAAGTC-30 and 50- CCGCTCGAGTTACTTGTACAGCTCGTCCATGCCG �30. This fragment was inserted into the

XhoI site of pPB-CAG-IB (Invitrogen) to obtain the pPB-CAG-IB-H2B-PA-mCherry vector.

Isolation of stable cell lines
To establish HeLa or DM cells stably expressing H2B-PA-mCherry, the Flp-In system (Invitrogen) was used as described previously

(Hihara et al., 2012). To establish HeLa cells stably expressing H2B-HaloTag, the Flp-In system (Invitrogen) was also used. For estab-

lishment of HCT116 RAD21-mAID-mClover OsTIRI cells (Natsume et al., 2016) and ESCs stably expressing H2B-PA-mCherry, the

PiggyBac transposon system was used. pPB-CAG-IB-H2B-PA-mCherry and pCMV-hyPBase were transfected into the HCT116

411 cells using Effectene Transfection Reagent (QIAGEN), and transformants were then selected using 10 mg/mL blasticidin.

pPB-EF1a-H2B-PA-mCherry-PGKneo and pCMV-hyPBase were transfected into the cells using Effectene Transfection Reagent

(QIAGEN), and transformants were then selected using 600 mg/mL G418.

Chemical treatment
For chemical fixation, cells were incubated in 2% FA (Wako) in 1 3 HBSS for 15 min or 4mM disuccinimidyl glutarate (DSG) for 7 hr

and washed with 1 3 HBSS. To increase histone tail acetylation, cells were treated with 500 nM TSA (Wako) for 8 hr. For FA-fixed

and TSA-treated cell imaging, cells were treated with 500 nM TSA for 3 hr and 2% FA (Wako) in 1 3 HBSS for 15 min and washed

with 13HBSS. To deplete ATP, cells were incubated inmedium supplementedwith 10mMsodium azide (Sigma-Aldrich) and 50mM

2-deoxy-glucose (Sigma-Aldrich) for 30 min. For inhibition of transcription, cells were cultured in medium supplemented with

100 mM DRB (Sigma-Aldrich) for 2 hr or 50 mg/mL DRB for 3 hr. For hypotonic treatment, cells were incubated in medium supple-

mented with 1 mL DMEM and 1 mL MilliQ water for 2 hr. To induce the degradation of RAD21-mAID, 500 mM indole-3-acetic

acid, a natural auxin, was added to the culture medium, and cells were cultured for 1 hr before imaging.

Cell cycle synchronization
HeLa cells were synchronized with 0.08 mg/mL nocodazole (Wako) for 4 hr, and mitotic cells were harvested by shake-off. Cells were

washed with PBS(–) and plated on glass-bottomed dishes with DMEM medium.

Flow cytometry
Flow cytometry (FCM) was performed to determine when the cells entered each phase of the cell cycle after release from synchro-

nization. Mitotic cells synchronized by nocodazole were isolated by shake-off and seeded into a new culture dish. The cells were

pulse-labeled for 60 min with 10 mM 5-ethynyl-20-deoxyuridine (EdU) at 7, 12, 15, 18, and 21 hr after shake-off. Pulse-labeled cells

were then trypsinized and fixed with ice-cold ethanol at 8, 13, 16, 19, and 22 hr after shake-off. After harvesting, to fluorescently label

the incorporated EdU in newly synthesized DNA, Click-iT EdU Flow Cytometry Assay kits (Invitrogen) were used. To label the DNA,

cells were also stained with FxCycle Far Red Stain (Invitrogen). FCM analysis was performed using a JSAN cell sorter (Bay Biosci-

ence) with a logarithmic FL1-A channel for EdU detection and a linear FL5-A setting for FxCycle Far Red Stain. The cells with

abnormal shapes or multiple nuclei were eliminated by forward/sideward scatter gating. Analysis was performed using Flowlogic

software. For each analysis, we started with �106 cells, and �104 cells of the flow cytometer results were plotted.

Conventional and correlative immunostaining
Immunostainingwas performed as described previously (Hihara et al., 2012;Maeshima et al., 2006). Cells were fixed in 2%FA (Wako)

or cold methanol. Primary antibodies were mouse anti-RAD21 (05-908; Millipore), rabbit anti-CTCF (07-729; Millipore), mouse anti-

NIPBL (sc-374625; Santa Cruz), rat anti-CAP-H2 (SAB4200655-100UL; Sigma-Aldrich), rabbit anti-Sox2 (ab97959; Abcam), mouse
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anti-H3K9me3 (a generous gift from Prof. Hiroshi Kimura), and mouse anti-polymerase II Ser5ph (a generous gift from Prof. Hiroshi

Kimura). Images were obtained using a DeltaVision microscopy imaging system (Applied Precision) or Nikon Eclipse Ti microscope.

For DNA staining in live cells, Hoechst 33342 (500 ng/mL) (Dojindo) was added to the cells for 30min followed bywashingwith PBS(–).

For DNA staining in fixed cells, DAPI (500 ng/mL) was added to the cells for 5 min followed by washing with PBS(–).

For correlative immunostaining, cells were plated on glass-bottomed dishes containing a grid (Matsunami) coated with polylysine.

After live-cell PALM imaging, cells were fixed in 2% FA (Wako), followed by conventional immunostaining. After staining, the same

cells were sought based on the grid coordinates, and images were obtained using a DeltaVisionmicroscopy imaging system or Nikon

Eclipse Ti microscope.

RNA interference
Transfection of siRNA was performed using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer’s instructions. The

following siRNA oligos were used as reported previously: RAD21 (Wendt et al., 2008), CTCF (Wendt et al., 2008), CAPH2 (Ono et al.,

2013), CAPG2 (Ono et al., 2013), and NIPBL (Zuin et al., 2014b). An oligo with low GC content (45-2002; Invitrogen) was used as a

control. For double treatment with RAD21-KD and TSA, cells were cultured for 48 hr after RAD21 siRNA transfection and then treated

with TSA (500 nM) for 4 hr.

Biochemical fractionation of nuclei from cells expressing H2B-PA-mCherry
Nuclei were isolated from HeLa cells expressing H2B-PA-mCherry as described previously (Maeshima et al., 2016b). Briefly

Collected cells were suspended in nuclei isolation buffer (3.75 mM Tris-HCl [pH 7.5], 20 mM KCl, 0.5 mM EDTA, 0.05 mM spermine,

0.125mM spermidine, 1 mg/ml Aprotinin, 0.1mMphenylmethylsulphonyl fluoride [PMSF]) and centrifuged at 1936 g for 7min at room

temperature. The cell pellets were resuspended in nuclei isolation buffer and again centrifuged at 1936 g for 7 min at room temper-

ature. The cell pellets were then resuspended in nuclei isolation buffer containing 0.025% Empigen (nuclei isolation buffer+) and ho-

mogenized immediately with ten downward strokes using a tight Dounce-pestle. The cell lysates were centrifuged at 4336 g for 5min.

The nuclei pellets were washed in nuclei isolation buffer+. The nuclei were incubated on ice for 15 min in a series of buffers: HE

(10 mM HEPES-NaOH, pH 7.5, 1 mM EDTA, and 0.1 mM PMSF), HE + 100 mM NaCl, HE + 500 mM NaCl, HE + 1 M NaCl, and

HE + 2 MNaCl. After incubation with salt, centrifugation was performed to separate the nuclear solutions into supernatant and pellet

fractions. The proteins in the supernatant fractions were precipitated using 17%TCA and cold acetone. Both pellets were suspended

in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) buffer and subjected to 12.5% SDS-PAGE and subse-

quent Coomassie brilliant blue (CBB) staining and western blotting using anti-H2B (Millipore) and anti-mCherry (RFP) (MBL)

antibodies.

EU and EdU labeling
EU and EdU incorporations were performed using Click-iT RNA imaging kits (Invitrogen) and Alexa Fluor 594 according to the man-

ufacturer’s instructions.

HaloTag labeling
H2B-HaloTags were stained with 1 nM HaloTag R110 Direct Ligand (Promega) for 1 hr and washed with 1 3 HBSS.

Labeling of DNA replication domains
The scratchmethodwas used to label DNA replication domains with Cy3-dCTP (Albiez et al., 2006). Briefly, in the presence of 200 nM

or 20 mMCy3-dCTP (GE), cells were scratched 200 timeswith aG27 fine needle. The background signals produced by freeCy3-dCTP

were reduced by allowing the cells to enter 1 or 2 rounds of the cell cycle (24 h) after changing themedium. In addition, since the signal

intensity of foci is 10- to 20-fold higher than single Cy3-dCTP and free (unincorporated) Cy3-dCTPsmoved too quickly to be tracked in

the time frame allotted, the signals produced by free ones are negligible. We thus tracked only foci movements, but not free ones.

Intracellular ATP measurement based on luciferase activity
HeLa S3 cells were grown in a 96-well culture plate (IWAKI) containing DMEM (Life Sciences) supplemented with 10% FBS. For

ATP depletion, cells were incubated in a 96-well plate containing 10mMsodium azide and 50mM2-deoxy-glucose in HBSS (GIBCO)

for 30 min. Cells were then washed with HBSS. To measure ATP, the Cell ATP Assay Reagent (300–15363; Toyo B-Net CO., LTD.)

was used according to the manufacturer’s instructions. Bioluminescence was measured using a Lumat LB 9507 tube luminometer

(EG &GBERTHOLD). Both the reaction andmeasurement were performed at room temperature in the dark. Incubation time from the

addition of the assay reagent to measurement was exactly 10 min.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis for PALM imaging and single nucleosome tracking
Sequential microscopy imageswere converted to an 8-bit grayscale, and the background signals were subtracted using ImageJ soft-

ware (NIH). The nuclear regions in the images were extracted. Following this step, the centroid of each fluorescent dot in each image
e5 Molecular Cell 67, 282–293.e1–e7, July 20, 2017



was determined, and its trajectory was tracked using u-track (MATLAB package) (Jaqaman et al., 2008). To generate PALM images

based on the data, the nucleosome positions weremapped using R software (65 nm/pixel), and then a Gaussian blur (sigma = 1 pixel)

was added to obtain smoother rendering using ImageJ.

For single-nucleosome movement analysis, the displacement and MSD of fluorescent signals were calculated based on the

u-track data. The originally calculatedMSDwas in two dimensions. To obtain the three-dimensional value, the two-dimensional value

wasmultiplied by 1.5 (4 to 6 Dt). Histograms of the displacement were prepared using KaleidaGraph (Synergy Software). To ascertain

the position determination accuracy of the nucleosomes with H2B-PAmCherry, we calculated the standard deviation of two-dimen-

sional movement of immobilized nucleosomes per 50 ms in FA-fixed cells (n = 10 molecules) and obtained 20.02 nm as the locali-

zation accuracy.

To generate a heatmap of domain dynamics, the median nucleosome movements (in 50 ms) in 3 3 3 pixels (65 nm/pixel) were

calculated and plotted with a blue-to-red color scale using R.

Clustering analyses of nucleosomes in PALM images
The 2D RDF is given by the equation
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where Dr = 10 nm is the binning width, and (N – 1)/S is the average particle density of S, which is the square of the total area. N is the

total number of particles contained in the area. The factorp(2rDr +Dr2) is the area of a ring of widthDrwith a radius of r +Dr. The delta

function is given by
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where ri,j is the distance between ri and rj.

Ripley’s K function is given by
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where (N – 1)/S is the average particle density of S, which is the square of the total area, and N is the total number of particles con-

tained in the area. The delta function is given by
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where ri,j is the distance between ri and rj.

The L function is given by
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:

The area (S) of the total nuclear region was estimated using the Fiji pluginWeka, and the area of the whole region wasmeasured by

Analyze Particles.

Analysis of coherent movement of nucleosomes and replication foci
Dual-color labeling and imaging of the nucleosomes with H2B-Halo labeled with R110 and Cy3-incorporated DNA replication do-

mains were performed using W-VIEW GEMINI (Hamamatsu Photonics). Cells expressing H2B-Halo were labeled with 1 nM R110

fluorescent dye. We selected closely localized H2B-Halo and DNA replication domains. Each movement of a spot was determined

by ImageJ Fiji plug-in Particle Tracker. Similar movement trajectories in dual color were calculated over 10 continuous frames

(500 ms) by the congruence coefficient (rc) (Abdi, 2007) as described below:

rc =

P
i;jxi;jyi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�P

i;jx
2
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	�P
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2
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	r :

LetX andY be I by Jmatrices of nucleosome and replication foci positions, respectively. X and Y are produced in the 10 continuous

frames. I indicates the x-coordinate of the position and J the y-coordinate, so in this case we set I to 2 and J to 10. To align the center

position of each trajectory in 10 frames, the average positions of X and Y were set to (0, 0) by subtracting the average position from
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each position in each color respectively. Positions of H2B-Halo (R110) and Cy3dCTP were corrected by affine transformation.

Parameters of affine transformation were estimated based on TetraSpeck bead imaging and calculated using the R package

(vec2dtransf).

Analysis of nuclear volume
ESCs with and without LIF were treated with 0.5 mg/mL Hoechst 33342 for 30 min. HeLa cells were treated with/without 500 nM TSA

for 2.5 hr and then additionally treated with 0.5 mg/mL Hoechst 33342 for 30 min. The z stacked images of labeled cell nuclei were

observed using an Olympus FV-1000-D confocal laser scanning microscope (31 sections with a 500 nm thickness). The acquired z

stack images were analyzed by the ImageJ plugin 3D Object Counter to measure the nuclear volume. n = 27 cells (with LIF), 29 cells

(without LIF), 35 cells (with TSA), and 35 cells (without TSA).

Computer simulation of L-function plots for condensation and decondensation of chromatin domains
To examine changes in the L-function plots upon decondensation of chromatin domains, we performed computer simulations using a

point distribution model. Here, we represented a nucleosome and a chromatin domain as a point and a cluster consisting of points,

respectively. The random-distribution, circular-domain, and ellipse-domain (rod-like shaped) models were constructed using

random numbers. In the circular domain model, first, we randomly generated center coordinates of N circles, with radius R, within

a 100 3 100 square such that there was no overlap between the circles. Then Min and Mout points were randomly generated inside

and outside the circles, respectively. Parameters used in the circular-domainmodel (N,Min /N,Mout/N andR) are listed and described

in Figure S7. In the rod-like shapedmodel, points were generated similarly to the circle-domainmodel using randomly rotated ellipses

with a semi-major axis of 20 and semi-minor axis of 5. Periodic boundary conditions were adopted to compute the L-functions for

each model.

Computational modeling of a chromatin domain
We structurally modeled a chromatin domain using atomic coordinates of the nucleosome (PDB code: 1kx5). The modeling proced-

ure was similar to that described in our previous paper (Maeshima et al., 2014). Here, the domain structure was modeled as follows.

(i) The position and orientation of the first nucleosome were randomly generated within a sphere of 80-nm radius. (ii) The position and

orientation of the second nucleosome were also randomly generated within the same sphere, so that the two nucleosomes were in

contact. Two nucleosomes were considered to be in contact if the distance between the nucleosomes was greater than 6 nm and

less than 18 nm, and if the minimum distance between two phosphor atoms of different nucleosomes was greater than 1 nm. (iii) The

positions and orientations of the third and later nucleosomes were randomly generated within the sphere of 80-nm radius, so that the

‘‘incoming’’ nucleosome had at least two points of contact with prior nucleosomes. The numbers of nucleosomes in the domains

(Figure 7C, left and right) are 646 and 1,000, and correspond to nucleosome concentrations of 0.50 and 0.78 mM, respectively.

DATA AND SOFTWARE AVAILABILITY

The raw data files for imaging data presented in this manuscript have been deposited toMendeley Data and are available at http://dx.

doi.org/10.17632/wr6zsbmshp.1.
e7 Molecular Cell 67, 282–293.e1–e7, July 20, 2017

http://dx.doi.org/10.17632/wr6zsbmshp.1
http://dx.doi.org/10.17632/wr6zsbmshp.1

	Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging
	Introduction
	Results
	Chromatin Domain Structures in Live Cells
	Chromatin Domain Dynamics in Live Cells
	Heterochromatin-Rich Regions Show Less Movement
	Chromatin Domains Are Organized by Nucleosome-Nucleosome Interactions and Cohesin Complexes
	Transcription Inhibition Does Not Affect Domain Structure but Increases the Dynamics
	Physicochemical Factors Are Also Involved in Chromatin Domain Formation and Dynamics
	Similar Domain Structures Are Observed in Mitotic Chromosomes
	Chromatin Domains Become More Apparent with Cell Differentiation

	Discussion
	Supplemental Information
	Author Contributions
	Acknowledgments
	References
	STAR★Methods
	Key Resources Table
	Experimental Model and Subject Details
	Cell Culture

	Method Details
	PALM imaging
	Plasmid construction
	Isolation of stable cell lines
	Chemical treatment
	Cell cycle synchronization
	Flow cytometry
	Conventional and correlative immunostaining
	RNA interference
	Biochemical fractionation of nuclei from cells expressing H2B-PA-mCherry
	EU and EdU labeling
	HaloTag labeling
	Labeling of DNA replication domains
	Intracellular ATP measurement based on luciferase activity

	Quantification and Statistical Analysis
	Data analysis for PALM imaging and single nucleosome tracking
	Clustering analyses of nucleosomes in PALM images
	Analysis of coherent movement of nucleosomes and replication foci
	Analysis of nuclear volume
	Computer simulation of L-function plots for condensation and decondensation of chromatin domains
	Computational modeling of a chromatin domain

	Data and Software Availability



