
Two-
Dimensional 
Differential 
Equations 

In the previous chapter we studied differential equations in which quantities 
increased or decreased in a monotonic fashion, reaching a fixed point as time 
increased. We know that in the real world quantities can also oscillate up and down 
in a regular or irregular fashion. The one-dimensional differential equations in 
the previous chapter, which have a single variable and a first derivative, cannot 
produce oscillation. In this chapter we consider differential equations with either 
a pair of variables and their first derivatives, or a single variable and its first and 
second derivatives. These two classes of problems are equivalent and are called 
second-order or two-dimensional ordinary differential equations. 

5.1 THE HARMONIC OSCILLATOR 

This section introduces several important concepts by considering a fa­
miliar problem from elementary physics courses-a mass on a spring (see 
Figure 5.1). Although masses and springs are of interest mainly to mechanical 
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x=o 

FigureS.l 
The mass on a spring: the 
archetypical harmonic 
oscillator. 

engineers, the mathematics describing them are fundamental to understanding 
the dynamics of many other systems. Because the problem is of general interest, 
it has a general name: the harmonic oscillator. 

Consider a mass, m, that is attached to a spring resting on a very smooth 
table so that there is no friction between the mass and the table. If the spring is 
neither stretched nor compressed, the mass will rest at a steady-state position. 
Call this position x = o. If the spring is compressed, that is, if x < 0, there will 
be a force tending to increase x, if the spring is stretched, x > 0, there will be a 
force tending to decrease x. According to Hooke's law, familiar from elementary 
physics, the force, F, is proportional to the position 

F = -kx, 

where the constant k is called the spring constant. Note that Hooke's law says 
that there is a linear relationship between force and position. Newton's second 
law of motion says that the acceleration a of a particle of mass m is related to the 
force on the particle by the famous expression 

F = rna. 

In differential calculus, acceleration is simply the second derivative of the position 
with respect to time. This is because velocity is the rate of change of x with respect 

to time, v = ~~, and acceleration is the rate of change of velocity with respect to 

time, a = ~~ = ~:;. Using this fact along with Newton's second law of motion 
and Hooke's law, we find 

(5.1) 

This is a linear, second-order, ordinary differential equation. In general, we want 

to solve this equation given some initial values of the position and the velocity. 
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5.2 SOLUTIONS, TRAJECTORIES, AND FLOWS 

Let us assume that at t = 0 the mass in Figure 5.1 is displaced to a position 
x(O) and released from rest so that the initial velocity is v(O) = O. We propose 
the following function as a solution to Eq. 5.1: 

x(t) = x(O)coswt where w = if. (5.2) 

Demonstrating that this is indeed a solution is straightforward: If we substitute 
this proposed solution into Eq. 5.1 and carry out the second derivative, we find 
that both sides of the equation are the same. A graph of this solution is shown in 
Figure 5.2. The solution oscillates without approaching a steady state. The time 
it takes to complete one cycle of the oscillation is ~ . 

What is the initial condition for this solution? By analogy to Chapter 4, we 
might say that it is x(O). But this is only half the story. If we placed the mass at 
position x(O), it might be moving either to the right, to the left, or not at all; to 

provide a complete description of the initial condition, we also need to specify 
v(O). In the solution given in Eq. 5.2, we happened to set v(O) = 0, but we might 
ask what are the solutions for other values of v(O). 

One way to gain insight into the dynamics of the harmonic oscillator is to 
consider all the possible initial conditions. Each possible initial condition can be 
represented as a point on a plane-the (x, v)-plane. The state of the harmonic 
oscillator at time t is the pair of values (x(t), v(t» . We can plot out the state as 
time proceeds simply by plotting (x(t), v(t» in the (x, v)-plane. The path traced 
out is called the trajectory. The (x, v)-plane is called the phase plane. 

Note that given a solution x(t), we can easily find the velocity v(t) by 
differentiation: 

v(t) = -wx(O)sinwt. (5.3) 

From Equations 5.2 and 5.3, and using the trigonometric identity sin2 wt + 

2lf/w 

Figure 5.2 
A solution x(t) to Eq. 5.1. 
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cos2 wt = 1, we find 

(5.4) 

This is the equation for an ellipse in the (x, v) -plane (see Section A.8). An example 
of the trajectory for two different initial conditions is shown in Figure 5.3. Both 
initial conditions have v(O) = 0, but one has x(O) = 0.5 while the other has 
x(O) = 1.0. You can see that the two trajectories plotted in Figure 5.3 are both 
ellipses with the same shape but different sizes; the size is governed by the initial 
conditions x(O) and v(O). 

Recall from physics that the potential energy of a mass on a spring is ! kx2 

and the kinetic energy is ! m v2 • It follows from Equation 5.4 and w = II that 

The sum of the potential and kinetic energies is the total energy, and we can 
see from the above equation that "energy is conserved;' that is, the total energy 
does not change. In this case the conservation of energy holds because there is 
no friction and because nothing is putting energy into the system. The energy 
always stays at the same value it had originally. In many other systems, energy is 
not conserved. Later, we will study some such systems. 

x(O) = 0.5 
vct) 

x(O) = 1.0 

-1_L..-1-------'0~---...J 

x(t) 

Figure 5.3 The trajectory of two solutions to Eq. 5.1, plotted in the phase plane. 
One solution has initial condition x(O) = 0.5, v(O) = 0; the other has initial 
condition x(O) = 1.0, v(O) = o. 
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One of the consequences of the conservation of energy in the harmonic 
oscillator concerns the stability of the trajectories. We have already seen that all 
the trajectories are closed ellipses. These closed ellipses correspond to periodic 
cycles. Are these cycles stable? Just as in finite-difference equations, a stable cycle 
is a cycle that is reestablished following a small displacement from the cycle. In the 
current case, a small displacement leads to another closed ellipsoidal trajectory­
the displaced trajectory will not find its way back to the original trajectory. Thus, 
the cycles in the harmonic oscillator are not stable. 

The initial condition is a special case of the state: It is the state at time t = O. 
So, given the trajectory from an initial condition, we also have the trajectory 
through many other possible initial conditions-any initial condition that lies on 

a given trajectory will follow that same trajectory. 
A two-dimensional differential equation can be represented as a pattern in 

the phase plane. The equation can be thought of as a rule that tells us how any 
given state changes in time. In other words, the equation tells us how a trajectory 
passes through any point in the phase plane. For any given initial condition, there 
is only one trajectory; however, the differential equation tells us about all possible 
trajectories. 

We could plot out this information by showing every possible trajectory. 
This would not be very practical, since the entire phase plane would be covered 
with ink. Instead, we will draw the trajectory through only a few points, indicating 
the direction of the trajectory by making the line thicker as time progresses. The 
entire pattern of trajectories in the phase plane is called the flow of the differential 
equation (analogous to the flow of water). A single trajectory is analogous to the 

path that would be followed by a (massless) particle if it had been placed in the 
water; the initial condition is analogous to the place the particle is first placed. 
Figure 5.4 shows the flow for the harmonic oscillator. 

5.3 THE TWO-DIMENSIONAL LINEAR ORDINARY 
DIFFERENTIAL EQUATION 

In the analysis of one-dimensional nonlinear finite-difference equations 
(Chapter 1) and differential equations (Chapter 4), the basis for the local stability 
analysis was a firm understanding of the linear system. Similarly, the analysis 
of two-dimensional nonlinear ordinary equations follows in a straightforward 

fashion once we understand the linear problem. The linear problem is also of 
interest in its own right, since many theoretical models in kinetics, mechanics, and 
electrical circuits are formulated as two-dimensional linear ordinary equations. 



214 Two- D IMENS IONAl DIFFERENTIAL EaUA TI ON S 

1:,..00: _ ..... 

/..;/'" ~--~ ~", 
v(t) .,--- __ - "" 

-' " ", - - - ,,," " " -: - --:........... . "-, , ~ -- ...."",, 
"", .... " , "''' ... '\ , '". . , ,',. -"\\\\ , , . .. . 0'.,. . ',' j , .. " , 

, '\ '.... .' I 
" " ' I , 

\ .... .. .. '" ~ ; L ,'" ... . " - -- -'" / ,," "- ' ~ -' / ....... ~ ~~.".. ,-" 
" .......... - .; /. 

..... --- -- , .. " 
" ...... _ -_- -'" .JI' -.............. = ."",-

o x(t) 

Figure 5.4 The flow of the harmonic oscillator in Eq. 5.1. 

The two-dimensional linear ordinary differential equation is written as 

d 2x dx 
a- +b- +cx =0 

dt2 dt ' 
(5.5) 

where a, b, and c are constants that we will assume are real numbers. In Chap­
ter 4 we saw that the solution to the one-dimensional linear ordinary differential 
equation is an exponential. It is an amazing fact that an exponential is also of­
ten the solution to higher-dimensional ordinary differential equations-but of 
course there is a complex twist to the story. 

In order to solve Eq. (5.5) we will substitute in a trial solution: 

(5.6) 

Here C and A represent constants-we do not yet know their value, but we are 
hoping to be able to find them from the differential equation. We will be able to 
do so only ifEq. 5.6 is an appropriate form for a solution to Eq. 5.5. Substituting 
the trial solution into Eq. 5.5 and carrying out the derivatives, we find 
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Dividing each term of this equation by C eAt, we obtain an equation that is called 
the characteristic equation, or the eigenvalue equation: 

a"A? + bA + C = 0, (5.7) 

If we can find any values for A that solve this equation, then we know that the trial 
solution is valid for those values of A. Of course, Eq. 5.7 is a quadratic equation 
in A. The solution for A as a function of the parameters a, b, and c can be found 
from the quadratic formula: 

-b + Jb2 - 4ac 
Al = , 

2a 
(5.8) 

We call A I and A2 the characteristic values, or eigenvalues, of Eq. 5.5. 
Since there are two valid values of A, we have found two solutions to the 

differential equation. Actually, there is an infinity of possible solutions, which 
have the general form 

(5.9) 

where CI and C2 are constants. Note that the characteristic equation did not put 
any constraint on C in the trial solution, so any constant value of C gives a valid 
solution. The actual values of CI and C2 for any given trajectory are set by the 
initial conditions. 

o ExAMPLE 5.1 

Verify that Eq. 5.9 is a solution to Eq. 5.5. 

Solution: Taking the first and second derivative of x(t) from Eq. 5.9 and 
substituting into Eq. 5.5, we find 

Re-arranging terms gives 

Eq. 5.9 is a solution to Eq. 5.5 only if the above equation is true. But, since 
the values of Al and A2 are chosen to satisfy the characteristic equation (Eq. 5.7), 
we know that the terms in the parentheses are zero in the above equation, and 
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so the left-hand side does indeed equal zero. This is true for any values of C I 

and C2 • o 

Here's the twist in the story: If b2 < 4ac, it follows from Eq. 5.8 that Al 
and A2 are complex numbers. They can be written as 

Al = a + f3i, A2 = a - f3i, 

where 

b 
a=--, 

2a 

J4ac - b2 

f3= 
2a 

and of course the infamous i = R. 
You may well be wondering, how can a differential equation that is supposed 

to describe the real world have a solution that involves imaginary numbers? The 
answer, in brief, is that C I and C2 are also complex numbers, and that for any real 
initial conditions, C I and C2 will cancel out the imaginary part of the solution, 
leaving only the real part. 

Many people would feel more comfortable if the solution to Eq. 5.5 could 
be presented without any mention of imaginary numbers. This real solution is 
(at least, it's real as long as b2 < 4ac) 

(5.10) 

where C3 and C4 are now bona fide real constants, which can be set from initial 
conditions. However, if b2 > 4ac, then f3 in Eq. 5.10 is itself complex, and you 
have to start worrying about what the sine and cosine of a complex number are. 
In this case, go back to Eq. 5.9, which will now look like a perfectly ordinary 
solution in terms of exponential functions of real numbers. 

For those readers who are interested in understanding the relationship 
between Eqs. 5.9 and 5.10, we offer the following information. Ifwehave a complex 
number y + 8i, then 

ey+ll; = eY (cos 8 + i sin 8) . 

(See Problem 5.3 for a derivation of this relationship.) Similarly, 

1 ( . . ) cos wt = - e,wt + e- lwr 
2 
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and 

These identities lead to one of the most magical relationships in all of mathematics, 
which involves the seemingly unrelated irrational numbers e and j{ , along with 

i =.J=T: 

ei1f + 1 = o. 

o ExAMPLE 5.2 

In the real world, a harmonic oscillator such as a spring does not swing 
forever; it eventually slows down due to friction and air resistance. This friction 
is called "damping," and the equation for a damped spring can be written as 

where IL is a number that describes how much damping there is. If IL were zero 
(i.e., no damping), then the solution to the equation would be a sinusoid with 
a period of oscillation of 2; . Determine the solution of this equation in the 
presence of damping, starting from an initial condition of x (0) = 5 deg and 
~ = 0 deglsec. 

Solution: The characteristic equation for this system is 

A 2 + ILA + {J} = o. 

The eigenvalues of this are 

If 1L2 > 4W2, both eigenvalues are negative. If 1L2 < 4w2, both eigenvalues are 
complex conjugates. These two cases are treated differently, as desribed below. 

• When IL 2 > 4w2: Call a = J IL 2 - 4w2• The solution can be written as 



218 Two - DIM ENS ION A L D IFF ERE N T I ALE QUA T ION 5 

From the initial conditions (x(O) = 5 and ~~ = 0) we find that 

C1 + C2 = O. ( -f.L + a ) ( -f.L - a ) 
2 2 

Since there are two equations in the two unknowns, we can solve for C 1 

and C2: 

C1 - - --_5(a+f.L) 
2 a 

5 (a-af.L). and C2 = -
2 

Therefore, the solution of the equation is 

x(t) = - -- e 2 + - -- e 2 • 
5 (a + f.L) ::.I!::±!!. t 5 (a - f.L) -#-. t 

2 a 2 a 

Since f.L > a, both eigenvalues are negative and there is a monotonic 
approach to x = o. This is illustrated in Figure 5.5. 

• When f.L2 < 4w2: Call a = J4W2 - f.L2. Therefore, from Eq. 5.10 we 
know that the solution is 

Now applying the initial conditions at t = 0, we find 

x 

Figure 5.5 
The solution of the 
differential equation for the 
damped pendulum with 
/-L = 2,w = 0.5. 
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Figure 5.6 
The solution to the 
differential equation for the 
damped pendulum with 
IL = 0.5, w = 1. 

Consequently, we have 

a 

Therefore, the solution x(t) is 

IE. at 5f.L IE.. at 
x(t) = 5e- 2 cos - + - e- 2 sm -. 

2 a 2 

This is an oscillatory decay to x = 0, as illustrated in Figure 5.6. 
D 

5.4 COUPLED FIRST-ORDER LINEAR EQUATIONS 

In the case of the mass on a spring, there was one fundamental variable, po­
sition, from which the velocity and acceleration could be derived. In other systems 
there may be more than one fundamental variable, and the rate of change of each 
of the variables may be a function of the current values all the variables. Here, we 
will consider the case where there are two such variables. The two variables might 
represent, for example, two interacting animal species in an ecological system, 
two different conductances of ion channels in a cell membrane, two different 

chemicals in a chemical reaction, or the concentration of a drug in two different 
organs. 

Such systems can be represented by a pair of coupled ordinary differential 
equations. In a simple but important case, the derivatives are linear functions of 
the variables so that 

dx - = Ax + By, 
dt 

dy 
dt = ex + Dy, (5.11) 
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where A, B, C, and D are constants. Although Eqs. 5.5 and 5.11 and at first 
appear to be different, they are completely equivalent. Therefore, once you know 
how to solve one of them, you can solve the other. 

In order to show the equivalence of both formulations, we first compute 
the second derivative ~:; in Eq. 5.11, to obtain 

d2x = A dx + B dy . 
dt2 dt dt 

Now substituting the value for 2' from Eq. 5.11 into the above expression, we 
find 

d2x dx 
dt2 = A dt + BCx + BDy. 

Finally, since from Eq. 5.11 we know that By = ~; - Ax, we can substitute this 
value to obtain finally the expression 

d2x dx 
- - (A + D) - + (AD - BC)x = O. 
dt2 dt 

Thus, Eq. 5.11 is equivalent to Eq. 5.5 as long as 

b c 
-(A + D) = - and AD - BC = 

a a 

For any a, b, and c, values of A, B, C, and D that satisfy this relationship can 
always be found, and vice versa. 

We can find the solution to Eq. 5.11 in terms of A, B, C, and D by solving 
the characteristic equation. In the current case, following the same procedure as 
in the preceding section, the characteristic equation is 

A2 - (A + D)A + (AD - BC) = 0, (5.12) 

so that the eigenvalues are computed from the quadratic equation as 

A + D J(A - D)2 + 4BC 
Al = -2- + 2 

J(A - D)2 + 4BC A+D 
A2 = 

2 2 
(5.13) 

Thus, the solution for x(t) is given by 
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which is real if Al and AZ are real numbers. If (A - D)z + 4BC < 0, then Al and 
AZ are complex numbers. Let 

ex= 
A+D 

2 

d' J(A - D)Z +4BC 
an 1{3 = 2 . 

Then, Al = ex + i{3 and Az = ex - i{3 and the solution is 

x(t) = eat (C3 cos (3t + C4 sin (3t). 

Cl and Cz, or C3 and C4 can be found from the initial conditionx(O) and '!': (0). 
If Al and AZ are real, then 

x(O) = C l + Cz 

dx 
- (0) = AlCl + AzCz, 
dt 

which can be solved for C 1 and Cz. If Al and AZ are complex, then 

x(O) = C3 

dx 
- (0) = {3C4 • 
dt 

DYNAMICS IN ACTION 

14 METASTASIS OF MALIGNANT TUMORS 

Metastasis of cancer is a process whereby cancer cells spread in the body. In some 

cases, the cancer cells spread through the bloodstream and are arrested in the 

capillary bed of an organ. Most of the arrested cells either die or are dislodged 

from the capillary bed, but some are able to traverse the capillary wall and initiate 

metastatic foci in the tissue of the organ. Liotta and Delisi (1977) studied metastasis 

of radioactively labeled tumor cells to the lungs of laboratory mice. The cells were 

injected into the tail veins of mice and transported to the lung by the bloodstream. 

The radioactive labeling allowed the number of tumor cells in the mice's lungs to 

be measured. 
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N~ 

Tumor cells 
arrested in 
vessels of 

target organ 

Xl 

~l 
Death or 

dislodgement 

Tumor cells 
that have 

invaded target 
organ tissue 

Death 

Compartmental model for metastatic spread of cancer cells. Xl is the number 
of cancer cells arrested in the vessels of the target organ and X2 is the number 
of tumor cells that have Invade the target organ tissue. The cells pass between 
compartments following linear rate laws as described In the text. Adapted from 
Liotta and Delisi (1977). 

The figure on the facing page shows the number oftumor cells plotted on a semilog­
arithmic scale. If the data were described by an exponential decay, they would fall 
on a straight line, but this is not the case. Liotta and Delisi proposed a more com­
plicated theoretical model accounting for the idea that tumor cells are first arrested 
in the capillary bed of the lung ("compartment 1"), and then invade the lung tissue 
itself ("compartment 2"). 

By measuring the various rates from experimental data, it is possible to assess how 
effective treatments are in reducing metastasis. Based on their knowledge of the biol­
ogy of metastasis, Liotta and Delisi propose the following mathematical description 
of the kinetics of radioactively labeled cells: 

The number of arrested cells is designated Xl and the number that successfully 
invade the target tissue is designated )(2. Cells pass from compartment 1 to com part -
ment 2 at a rate fJ2Xl . Cells are lost from compartment 1 by death or dislodgement at 

a rate /31 Xl, and from compartment 2 at a rate /33)(2. These relationships are schemat­
ica��y represented in the upper figure. The initial conditions are Xl(O) = Nand 
)(2(0) = o. N is the number of cells that are initially arrested in the target organ. 
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The proportion of labeled cells remaining in the lungs following intravenous 
injection in the tail veins of mice. The dots show the experimental data, and the 
line is a fitted solution to the model. Note the semilogarithmic axes. Adapted 
from Uotta and Delisi (1977) based on Proctor et al. (1976). 

Experimentally, the total number oftumor cells in the lung, x, (t) + X2(t), is measured. 
The model can be used to calculate x, (t) + X2( t), and the experi mental measurement 
of this number can then be used to estimate the rates in the model. 

Since the variable x, follows the kinetics of exponential decay, we can use the 
methods in Chapter 3 to find 

To find the solution for X2(t), we notice that the pair of differential equations looks 
just like Eq. 5.11 with X2 = x and x, = y, and 

A = -Ih B = -132, ( = 0, and D = -(f3, + 132)· 

We can sustitute these values for A, B, (, and 0 into Eq. 5.13 to find 

A = _ f3, + f32 + f33 ± J(f3, + 132 - f33)2 
2 2 

so that we find the two eigenvalues 
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Therefore, we obtain 

where C, and C2 are constants that stili need to be set from the initial conditions. 

At t = 0, from the initial conditions stated in the problem we know that X2(0) = 0 

and ~ (0) = fJ2N. Equating the expression for X2(t) equal to 0, we find 

C, + C2 = O. 

Taking the derivative of the expression for X2(t) and equating it to fJ2N, we find 

Thus, from the two initial conditions, we have been able to derive two equations 

that can be solved simultaneously to obtain values for the two unknowns, C, and 
C2 . Carrying out the algebra, we find 

C, = -</IN, 

where 

Therefore, 

Consequently, the total amount of radioactive label in the lung as a function of time 

is 

In the graph on page 227, the solid curve shows the fit to the data with fJ, = 0.32 

hr-', fJ2 = 0.072 hI', and fJ3 = 0.02 hI'. Therefore, for t sufficiently large that 

(fJ, + fJ2)t » 1, we find that the celis have disappeared from compartment 1, 

and the long time behavior is dominated by the destruction of celis remaining in 

compartment 2 at a rate fJ3. 
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DETERMINANTS AND EIGENVALUES* 

The characteristic equation for a pair of coupled first-order linear differ­
ential equations (Eq. 5.11) can also be expressed in terms of determinants. The 
basic idea is simple, but it requires some linear algebra. If you haven't studied 

linear algebra, keep in mind that you already know the solution to Eq. 5.11 as 

given by Eq. 5.9 or, equivalently, Eq. 5.10. 
Equation (5.11) can be written as a matrix equation: 

(5.14) 

Suppose we could define two variables, ~ and T/ such that for some constants a, 
fJ, y, and a, 

and such that 

x = a~ + fJT/, 

y = y~ + aT/, (5.15) 

(5.16) 

This equation is much easier to solve, because it is two uncoupled equations: 

dT/ 
dt = J... 2T/. 

From the previous chapter, we know that these two equations have the solution 
~(t) = ~(O)eAlt and T/(t) = T/(0)eA2t . Now it would be easy to findx(t) andy(t) 

simply by applying Eq. 5.15. 

The problem of finding ~ and T/ that satisfy Eq. 5.15 and Eq. 5.16 is well 

known in linear algebra as the eigenvalue problem. The solution is routine once 

one knows the technique. It involves solving the equation 

A -J... 
det 

C 

B 

D -J... 
=0, (5.17) 

*This section employs linear algebra. It gives an alternative and more elegant method 
to show that the eigenvalues of Eq. 5.11 are those given in Eq. 5.13. Using this method 
facilitates computations, but it is not essential. 
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where detl . I denotes the determinant of the matrix. The determinant of a matrix 

with two rows and two columns is defined as 

Applying the definition ofthe determinant to Eq. 5.17, we find that it is exactly 

the same as Eq. 5.12. 

5.5 THE PHASE PLANE 

Two-dimensional nonlinear ordinary differential equations are often 

written in the form 

dx 
dt = f(x, y), 

dy 
dt = g(x, y), (5.18) 

where f(x, y) and g(x, y) are nonlinear functions of x and y. Just as we saw in 
Chapter 1, the introduction of nonlinear functions can make it difficult, if not 
impossible, to find an analytic form for the solution. 

A qualitative understanding of two-dimensional nonlinear ordinary differ­
ential equations can often be gained from studying the phase plane of the system. 
This can provide information about multiple stable and unstable fixed points that 
is not given by numerical integration. In this section we will describe geometric 
methods of studying the phase plane. In the following section, we will return to 

the algebraic method for the analysis of the stability of fixed points. Later, we 

will describe a numerical method for finding approximate solutions to nonlinear 

ordinary differential equations. 

As an example of the use of geometric phase-plane techniques, consider 

the interaction of a predator and a prey species. Let x be the population of a prey 

species and y be the population of a predator species. We assume that if there 

were no predator, the prey would increase exponentially, and that if there were no 

prey, the predator would decrease exponentially. By eating the prey, the predator 
increases its own population and, obviously, decreases the population of the prey. 

The rate at which predator and prey meet (and therefore the rate at which the 

prey disappears and the predator thrives) is assumed to be proportional to the 

product of the populations of the predator and the prey. The justification for this 

is that if the population of either predator or prey is zero, the meeting rate is zero. 
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The equations are written as 

dx = ax - {3xy, 
dt 

dy 
= yxy - oy, 

dt 
(5.19) 

where x, y ::: 0 and a, {3, y, and 0 are positive constants. These are the Lotka­
Volterra equations. The equations were proposed independently by Volterra, 
who was a mathematician interested in ecology, and Lotka, a chemist interested 
in oscillatory chemical reactions. 

The first step in examining the geometry of the dynamics involves looking 
at the isoclines of the flow. The x-isocline is the locus of points in (x, y)-plane 
along which tt;; = O. The y-isocline is, similarly, the locus of points along which 

2' = O. Fixed points are values at which both ~~ = 0 and ~ = O. Fixed points 
occur at the points of intersection of the x- and y-isoclines. 

Let us now consider the Lotka-Volterra equation as an example of 
geometrical analysis of the phase plane. Figure 5.7 shows the flow, as well as the 
x- and y-isoclines. The x-isocline is defined by the expression 

I(x, y) = ax - {3xy = o. 

This will be satisfied if 

x = 0 or a - {3y = 0, 

which describes two perpendicular lines in Figure 5.7. Similarly, the y-isocline is 
found from 

g(x, y) = yxy - oy = o. 

This expression is satisfied if 

y = 0 or yx - 0 = 0, 

again, two perpendicular lines. 
There are two points of intersections of the x- and y-isoclines, and hence 

two fixed points. The fixed point at x = y = 0 has an obvious biological 
interpretation: There are no predators and no prey, and therefore nothing would 
ever change in time. The second fixed point, y = ~,x = ~,is a point where 
the populations of predator and prey are exactly balanced. Away from the x - and 

y-isoclines there will be changes in the population levels of x and y. 
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x-isocline 

y-isocline 

Figure 5.7 The isoclines and flow of the Lotka-Volterra system (Eq. 5.19 with 
f3 = y = 2 and ex = 8 = 1.) The x-isocline (thick lines) and the y-isocline (thin 
lines) intersect at the two fixed points of the dynamics. 

In order to examine the dynamics away from the isocline, one looks at the 
flow imposed by the differential equations. This can easily be done. In a short time 
interval ~ there will be a displacement in the x direction of approximately x = 
f(x, y)~. The displacement in the y direction is approximately y = g(x, y)~. 

The local trajectory through x, y can be found by taking the vector sum of the x 
and y displacements. For detailed pictures of the sort shown in Figure 5.7, it is 
convenient to use a computer to draw the picture of the flow in the phase plane. 

For understanding the dynamics of a system, a quick, "back-of-the­

envelope" picture of the dynamics is often sufficient. This can be drawn as 
follows: 

1. Draw the x- and y-isoclines. 

2. On one side of the x-isocline the flow will be to the left and on the other 
side, the flow will be to the right. Use the equations to decide which side 
is which, and draw many arrows showing the flow in the x direction. 
This is shown in Figure 5.8. 
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Figure5.S 
The x-isocline and arrows showing 
the direction of flow in the x 
direction on each side of the isocline. 

3. Similarly, on one side of the y-isocline the flow will be downwards, and 
on the other side the flow will be up. Draw many arrows showing the 
flow in the y direction (see Figure 5.9). 

4. Combine the x and yarrows to give the vector flow field. This is shown 
in Figure 5.10. 

Of course, it is possible, either by hand or using a computer, to draw a 
detailed picture of the flow. In the Lotka-Volterra system, by tracing a trajectory 
through the flow, we see that starting from any point with positive populations, 
we will cycle around the fixed point, producing oscillations of predator and prey. 
It is not possible with this geometric method to tell if the cycling will be periodic 
or will spiral in to the fixed point or away from it. However, additional analysis 
using a quantity analogous to the energy in the harmonic oscillator shows that 
in this problem the trajectories are closed paths, just as we found in the ideal 

'I JJ, lft 
J J, t f t 

~ J tr t 
Figure 5.9 
The y-isocline and arrows showing 
the direction of flow in the y 
direction. 
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y 

Figure 5.10 
Combining the x and y flow gives an 

)( idea of what the trajectories look 
like. 

harmonic oscillator. Therefore, the Lotka-Volterra system gives rise to periodic 
cycles in population. (See Problem 5.28.) 

5.6 LOCAL STABILITY ANALYSIS OF 
TWO-DIMENSIONAL, NONLINEAR 
DIFFERENTIAL EQUATIONS 

The local stability analysis of fixed points in two-dimensional nonlinear 
ordinary differential equations such as Eq. 5.18 is based on approximating the 
nonlinear equation by a linear equation in the neighborhood of fixed points of the 
equation. We can then make use of our understanding of two-dimensional linear 
equations to determine the dynamics in the neighborhood of the fixed points. 

Assume that we are given the nonlinear Eq. 5.18. Let us assume that there is 
a fixed point (x*, y*) for which I(x*, y*) = g(x*, y*) = O. The linear analysis 
involves carrying out a Taylor expansion of the nonlinear functions I (x, y) and 

g(x, y) in the neighborhood of (x*, y*). The Taylor expansion of a function 

I(x, y) is 

* * al I * al I * I(x,y) = I(x ,y)+ - (x-x)+ - (y-y )+"', (5.20) 
ax x',y' ay x',y' 

where the dots represent terms with higher-order derivatives such as ! ~:~ (x -

x*)2. If we now let 

x = x - x*, y = y - y*, (5.21) 
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We can expand Eq. 5.18 to obtain 

where 

A= 

C= 

dX 
dt = AX + BY + ... , 

dY 
- =CX+DY+··· 
dt 

:~ Ix.,y. B= :; Ix.,y. 

ag I 
ax x.,y. D= ag I 

ay x.,y .. 

(5.22) 

(5.23) 

In the neighborhood of the fixed point, the higher-order terms are neg­
ligible in comparison with the linear terms in Eq. 5.22. Consequently, in the 
neighborhood of the fixed point, the nonlinear equation can be approximated by 
a linear equation: 

dX 
- =AX+BY, 
dt 

dY 
- =CX+DY. 
dt 

(5.24) 

The process of approximating a nonlinear differential equation by equations of 
the form ofEq. 5.24 is called linearization. 

The geometry of the vector field in the neighborhood of the fixed points 
in the phase-plane representation can be classified based on the eigenvalues of 
the linear approximation given in Eq. 5.24. We have already determined the 
eigenvalues of the linear equation in Eq. 5.13. We found that the eigenvalues, Al 

and A2, are 

A + D J(A - D)2 + 4BC 
Al = -2- + 2 ' 

A + D J (A - D)2 + 4BC 
A2 = --- - -'-------

2 2 

Several different cases can be distinguished. The flows for three different 
cases are illustrated in Figures 5.11, 5.12, and 5.13. 
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Figure 5.11 A stable focus. A = -1, B = -1.9, e = 1.9, and D = -1. 

Focus (A - D)2 + 4BC < O. In this case, the eigenvalues are complex 
numbers. This means that the flow winds around the fixed point (see Fig­
ure 5.11). The size of the imaginary part tells how fast the winding occurs. 
The real part is AiD. If AiD < 0 the focus is stable, and if AiD > 0 the 
focus is unstable. The special case where AiD = 0 is called a center. 

FigureS.12 A stable node. A = -1.5,B = I,e = I,andD = -1.5. 
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Figure 5.13 A saddle point. A = I, B = I, C = I, and D = -1. 

Node (A - D)2 + 4BC > 0 and IA + DI > IJ(A - D)2 + 4BCI. 

In this case the eigenvalues are both real and the same sign. If AiD < 0 

the node is stable (see Figure 5.12), and if AiD > 0 the node is unstable. 

Saddle point 

(A - D)2 + 4BC > 0 and IA + DI < IJ(A - D)2 + 4BCI. 

In this case the eigenvalues are both real, but with different signs. The 
trajectories of the vector field in the neighborhood of the saddle point are 
similar to the way water would flow on a horse's saddle (see Figure 5.13). 

o ExAMPLE 5.3 

Characterize the dynamics of the Lotka-Volterra equations (Eq. 5.19) near 

the fixed points. 

Solution: We found in Section 5.5 that the fixed points occur at x* = 0, 

y * = 0, and at x * = 8/ y, y * = ex / f3. We will consider each of these fixed points 

in turn. 

Near a fixed point, the dynamics are well approximated by a linear system 

dz - = Az + Bw, 
dt 

dw 
dt = Cz + Dw 
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where z = x - x* and w = y - y*. The constants A, B, C, and D are found by 
evaluating the partial derivatives at (x*, y*): 

A = of I = a - fJy* 
ox (x',y') 

B = of I = -fJx* 
oy (x',y') 

og I * C = - = yy 
ox (x',y') 

og I * D = - = yx -8 
oy (x',y') 

The fixed point at the origin (x* = 0, y* = 0) is especially important, 
. because it corresponds to extinction of both predator and prey. If this fixed point 
were stable, then even ifboth populations were non-zero, the predator-prey dy­
namics might lead to extinction. At the origin, we have A = a, B = 0, C = 0, 
and D = -8. The eigenvalues are therefore 

a-8 J(a+8)2 
A = -- ± -'-----

2 2 

or, simplifying, 

Since in the Lotka-Volterra equations, a and 8 are both positive, Al is positive 
and A2 is negative. Thus, the fixed point at the origin is a saddle. 

The other fixed point occurs at x* = 8jy and y* = aj fJ, which gives 
A = 0, B = -fJ8jy, C = yaj fJ, D = o. The eigenvalues are therefore 

A = ±,J-a8. 

These eigenvalues are purely imaginary, meaning that the populations of preda­
tors and prey oscillate around the fixed point. Since (A + D)j2 = 0, the focus 
is a center, but this would be meaningful only if the linearized system were ex­
actly faithful to the full nonlinear system. Using an argument analogous to the 
conservation of energy, it is possible to show that the trajectory consists of closed 
curves around the fixed point. (See Problem 5.28.) 

Since the fixed point at x* = 0, y* = 0 is a saddle, it is unstable in the sense 
that for almost any nonzero level of predator and prey population near extinction, 
the system will eventually lead to an increase in both populations. (The "almost 
any" is intended to exclude the case where the prey population is set to exactly 
zero. In this case, the predator population will die out exponentially, whatever 
is its initial value.) This might suggest that predator-prey systems are robust 
to disturbances; that extinction is difficult. Notice, though, that the seeming 
robustness is sensitive to details in the model construction. If the model were 
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changed slightly so that the predator did not depend for sustenance solely on the 
prey, then extinction is a real possibility for the prey. o 

o ExAMPLE 5.4 

In mutual inhibition, there are two variables, each of which inhibits the 

other. For example, in the lambda bacteriophage (see Dynamics in Action 2), the 

lambda repressor and the cro protein mutually inhibit each other. Here, we shall 
see how the Boolean network model for the lambda bacteriophage translates into 

a differential equation model. 
A theoretical model for mutual inhibition is 

dx (!)n - = f(x) = ...,..-:-:-:.::-:--- - x, 
dt or + yn 

dy - = g(x) = 
dt 

or or +xn - y, 

where x and yare positive variables and n is a positive constant greater than two. 

There is a steady state at x* = y* = ~. Discuss the bifurcations and sketch the 
flows in the (x, y)-plane as n varies. 

Solution: We linearize around the fixed point at x* = ~,y* = ~ 

A = of I --1 
ox (x",y") 

B= of I =-
oy (x",y") 

or n n-ll __ ~ (0 r + yn)2 y - 2 

(!)n nxn-1 = 
(( -21 )n + xn)2 

(x",y") 

c= og I = 
ox (x",y") 

og I 
D = oy (x",y") = -1 

2 J4-H.,fo 
Using Eq. 5.13, the eigenvalues are - 2' ± 2 ' or 

n 
Al = -1 + -

2 

n 
A2 = -1 - -

2 

n 
2 
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n<2 

y 

0.5 

o~--~----~~--~ 
o 0.5 1.0 1.5 

x 

FigureS.I4 
Phase plane for mutual inhibition 
showing a stable node. 

FigureS.IS 
Phase plane for mutual inhibition 
showing a saddle point plus two 
stable nodes. 

The steady state is therefore a stable node for n ~ 2 and a saddle point for n > 2. 
The trajectories in the (x, y)-plane can be sketched; see Figures 5.14 and 5.15. 

The sketches show that for n > 2 there are two additional stable nodes. 
This is a typical bifurcation in two-dimensional ordinary differential equations in 
which a stable node splits into a saddle point plus two stable nodes. The biological 
interpretation is as follows. The larger the value of n, the stronger the inhibitory 
interactions will be. At strong interactions, one of the variables wins out and 

reaches a high value, whereas the other variable is at a low value. Such a model 
captures the essence of mutual inhibition and as such may be important in the 
analysis of competition of manufacturing production or of ecological species. D 

The quantitative analysis of fixed points using linearization and the calcula­
tion of eigenvalues provides exact information about the stability of fixed points. 
For heuristic purposes, the isocline method can also be used to provide quali­
tative understanding of the behavior near a fixed point. The procedure is quite 
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simple. First, draw the x - and y -isoclines in the region of their intersection. If the 
isoclines are not parallel where they intersect, the two isoclines divide the plane 
into four quadrants. Now, choose one of the quadrants (it doesn't matter which 
one) and calculate ~; and ~ in that quadrant. The vector (~; , ~) indicates 
the direction of flow in that quadrant. 

Repeat this procedure for the other three quadrants. Or, you might note that 

if ( ~; , ~) points in the (+, +) direction in one quadrant, then in the quadrant 
across the y -isocline, it will point in the (+, -) direction; in the quadrant across 
the x -isocline, it will point in the ( -, +) direction; and in the remaining quadrant 
it will point in the (-, -) direction. Three cases are shown in Figures 5.16, 5.17, 
and 5.18. 

x-isocline 

x-isocline 

(-,+) 
(-,-) 

x-isocline 

Figure 5.16 
The geometry of a node. Flow near the 
intersection of the x- and y-isoclines. 
In each quadrant, the sign of ~ and 
~ is shown (for example, (-, -) in 

the upper-right quadrant) and the 
corresponding rough direction of the flow 
in that quadrant is indicated by an arrow. 

Figure 5.17 
The geometry of a focus. 

Figure 5.18 
The geometry of a saddle. 
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FLOWS AND VISUAL PERCEPTION 

The human visual system is particularly effective at perceiving flow fields. 
This allows us to experiment with some of the concepts contained in the previous 
mathematical material without doing any algebra. 

We saw in Section 5.5 how the flow field can be sketched by drawing arrows 
at many places in the phase plane. The eye is capable of seeing flow patterns even 
when the whole arrow is not sketched. Just putting dots at the positions of the 
head and tail of the arrow will suffice. 

A useful method for generating the visual appearance of a flow field is 
provided by the superimposition of dot patterns. Figure 5.19 shows three related 
dot patterns composed of random dots. On the top is a random pattern (A). 
The pattern in the center (B) is an expanded version of these same random dots 
(the x- and y-coordinates of all points in A are multiplied by 1.05). Pattern C 
is formed by multiplying the x coordinate of all points in pattern A by 1.05 and 
multiplying the y coordinate by 0.95. 

Each of the three patterns looks random and shows no sign of a flow field. 
By placing one pattern over another one, and by rotating the overlaid patterns 
slightly, it is easy to perceive the geometries of flow fields in the neighborhood of 
fixed points. By superimposing pattern A on itself, but rotating slightly, there is a 
circular image; superimposing pattern A on pattern B without rotation gives rise 
to the geometry of a node; superimposing pattern A on pattern B with rotation 
gives the geometry of a focus (see Figure 5.20); finally, superimposing pattern A on 
pattern C gives rise to a saddle point geometry (see Figure 5.21). This shows how 
simple expansions, contractions, and rotations underlie the various geometries in 
the neighborhoods of steady states in nonlinear ordinary differential equations. 
These images, originally described by one of us (Glass) and colleagues, are being 
studied by scientists who are interested in evaluating the types of computation 
the brain performs during visual perception. 

The best way to explore how contractions and rotations create different 
sorts of flow fields is to make two photocopies of the random dot patterns in 
Figure 5.19, one on ordinary paper and the other on transparent film. By aligning 
the two copies of the different dot patterns with one another (use the square 
brackets in the top right corner and along the left edge), and rotating them, you 
will see different flow patterns appear. If you make just one copy and match it up 
to the printed copies in the book, you may observe that your photocopier rescales 
the image slightly. 
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Figure 5.19 The pattern of random dots in (A) is enlarged in both directions in 
(B) and enlarged in one direction and shrunken in the other in (C). 
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5.7 

Figure 5.20 
Superimposing pattern A on 
pattern B with a rotation of 
0.1 radians creates the flow 
near a focus. 

Figure 5.21 
Superimposing pattern A on 
pattern C, with no rotation, 
creates the flow near a 
saddle. 

LIMIT CYCLES AND THE VAN DER POL 
OSCILLATOR 

So far we have considered two differential equations that display oscilla­
tions-the ideal harmonic oscillator and the Lotka-Volterra equations. In both 
of these, if some outside disturbance moves the state off of its original trajectory, 
the new trajectory after the disturbance will be different in amplitude and will 

never rejoin the original trajectory (unless another outside disturbance happens 
to do the job). Most biological oscillations show a different behavior. If there is a 
small outside disturbance, then after sufficient time (i.e., as t -+ (0) the original 



5.7 LIMIT CYCLES AND VAN DER POL OSCILLATOR 241 

trajectory is established. This type of behavior is called a stable limit cycle. The 
French mathematician Henri Poincare (1854-1912) was the first to realize that 
this type of behavior could arise in differential equations. You have already seen 
this type of behavior in Dynamics in Action 1. 

Figure 5.22, repeated from Dynamics in Action 1, gives an example of an 
electrical shock delivered to oscillating cardiac tissue. The reestablishment of the 
oscillation with the same period and amplitude as before the shock is an indication 
that a theoretical formulation for the oscillation should have a stable limit cycle 
oscillation. Probably the first and simplest theoretical model for cardiac oscilla­
tions was proposed by B. van der Pol, an electrical engineer, and his collaborator, 
J. van der Mark. 

The van der Pol equations are 

dx 1 
- = f(x, y) = -
dt E 

dy 
= g(x) = -EX, 

dt 
(5.25) 

where it is usual to assume that 0 < E « 1. 

Even though it is not possible to find an analytic solution of the van der Pol 
equations, the properties of this equation can be determined using the qualitative 
methods introduced in the previous two sections. We first sketch the flow in the 

(x, y)-plane, as shown in Figure 5.23. The x-isocline, found by setting ~~ = 0, 

500 msec 

o ]mv 
-50 

Figure 5.22 Recording of transmembrane voltage from spontaneously beating 
aggregates of embryonic chick heart cells. The intrinsic cycle length is To. A stimulus 
delivered at a time 8 following the start of the third action potential leads to a phase 
resetting so that the subsequent action potential occurs after time T. After this, the 
aggregate returns to its intrinsic cycle length. Adapted from Guevara et al. (1981). 
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x-isocline 

y 

y-isocline 

Figure 5.23 The flow and isoclines of the van der Pol equations (Eq. 5.25, 
E = 0.1). The limit cycle is shown as a thin line. 

is the cubic function 

x 3 
Y = - -x. 

3 

Similarly, the y-isocline, found by setting ¥r = 0, is 

x = o. 

There is only one intersection of the x- and y-isoclines, and therefore only one 
fixed point, which is at x = y = o. 

The flow vectors plotted in Figure 5.23, suggest the flow is mostly horizontal, 
toward the x-isocline. However, there is also a slight vertical component to the 
flow. Since we are assuming 0 < E « 1, any initial condition that is not on 
the x-isocline will lead to relatively rapid changes in the value of x until the 
state is in the neighborhood of the x-isocline, whereas the vertical component 
of flow, ¥r, is small. Near the x-isocline ~~ is small, so there is not much flow 
in the horizontal direction. In this region, the small vertical component to the 
flow becomes significant, causing motion along the x-isocline. This motion is 
either up or down, depending on whether the state is on the left or right limb of 
the isocline. Once the vertical flow has carried the state near the local extremum 
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of the x-isocline, the horizontal flow again dominates, producing a jump to the 
other limb of the x-isocline. Since the fixed point at the origin is unstable (see 
Example 5.5), we know that trajectories do not spiral into the origin. Instead, there 
is a stable limit cycle, which is approached no matter what the initial condition. 

Figure 5.24 shows x as a function of time. The various segments are labeled 
to correspond with the region of the phase-plane plot. Note that the oscillation, 
with its slow drifts in the value of x, interrupted by sudden changes in the value of 
x, is similar to the recording of cardiac electrical activity. Modifications to the van 
der Pol equation proposed by several researchers form the basis for theoretical 
studies of oscillations in cardiac tissue even 70 years after the equations were 
proposed. 

o ExAMPLE 5.5 

Consider the van der Pol equations with E > O. Evaluate the stability of the 

fixed point x* = y* = O. 

Solution: In order to determine the eigenvalues of Eq. 5.25 at the fixed 
point, we compute 

2 
x 

o 

8j I 1 
A= 

ax 00 E 

c= :! 100 = -E, 

Jump right 

Along 
x-isocline 

8j I 1 
B= = 

ay 0,0 E 

D= - =0. 8g I 
8y 0,0 

time 

Figure 5.24 x measured from the van der Pol system with E = 0.1. 
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~ Using Eq. 5.13, we find the eigenvalues are A = -t ± ~ - or, simplifying, 

Consequently, for 0 < E < ~ there is an unstable node, and for ~ < E 

there is an unstable focus. Notice that the stability analysis gives us a better under­
standing of the dynamics in the neighborhood of the fixed point than is possible 
with the phase-plane analysis, but the analysis does not give information about 
the dynamics in the limit t ~ 00. 

5.8 FINDING SOLUTIONS TO NONLINEAR 
DIFFERENTIAL EQUATIONS 

D 

We have seen how to use isoclines to understand qualitatively the dynamics 
of nonlinear differential equations, and how to use linearization and eigenval­

ues to calculate quantitatively the stability of fixed points. We have not yet seen 
any general method for calculating solutions to nonlinear differential equations. 
The reason is that it is generally difficult or impossible to find such solutions 
algebraically. In Chapter 1, we used the procedure of iteration to find numerical 
solutions to the nonlinear finite-difference equations we wanted to study. In this 
section, we shall present an analogous method for finding approximate numerical 
solutions to nonlinear differential equations. This method can be used to find the 
trajectory from any given initial condition. 

The method for numerical integration of differential equations, called the 
Euler method, is based on the same approximation of the derivative ~; that we 
made in Section 4.6. As there, we define a discrete-time variable Xt = x(t) for 
t = 0, d, 2d, .... Then we have 

dx = lim Xt+l - Xt 
dt ~ ..... o d 

(5.26) 

Applying this definition of the derivative in Eq. 5.18, we get the equations 

Xt+l - Xt = f(xt, Yt)d, 

Yt+l - Yt = g(Xt, Yt)d, (5.27) 

or 

Xt+l = f(xt, Yt)d + Xt, 

Yt+l = g(Xt, Yt)d + Yt· (5.28) 
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Equation 5.28 is a pair of coupled finite-difference equations, and they can be 
iterated to find the solution from any initial condition x(O), y(O). 

DYNAMICS IN ACTION 

15 ACTION POTENTIALS IN NERVE CELLS 

To illustrate numerical integration, we will consider a mathematical model of the 
nerve cell. Nerve cells have a long branch called an axon, which transmits electrical 
impulses. The axon is an example of an excitable medium (see Section 2.5). Under 
normal conditions it rests quiescently. Given a small stimulus, it will retum to rest 
almost immediately. However, a sufficiently large stimulus will cause the axon to 
"fire," after which time it is refractory and retums to rest. The sequence of firing and 
returning to rest is called an action potential. 

The first detailed and accurate description of the mechanics of the axon was given 
in a complicated set of equations by A. L. Hodgkin and A. F. Huxley in 1952. This 
work won them the Nobel prize. A caricature of the Hodgkin-Huxley equations, 
which nonetheless conveys important aspects of the dynamics, is given by the 
Fitzhugh-Nagumo equation: 

dv 
dt = I - v(v - aXv - 1) - w, 

dw 
(it = E(V - yW). (5.29) 

y, E, and a are parameters, and v and ware the dynamical variables. v is the voltage 
across the cell membrane, and w is a recovery variable. I is the stimulus current that 
is injected into the cell. 

Like the real axon, the equations have a quiescent resting state, and a small stimulus 
current does not produce an action potential. In our case, we want to see how large 
a current pulse is needed to generate an action potential when the cell is quiescent. 

As you might have anticipated, the quiescent resting state corresponds to a stable 
fixed point in the differential equations. The figure on the next page shows the 

isoclines and the flow field when I = O. There is a fixed point at v = 0, w = O. 
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w-isocline 

v-isocline 

....- ----- ..... ...... ---...". .. - ---o 0.5 v 

The isoclines and flow field for the Fitzhugh-Nagumo equations of nerve cell 
dynamics (I = 0). 

Linearizing the equations around this fixed point, we find 

The eigenvalues are 

dv 
dt 

dw 

= -av-w 

dt = EV - EyW. 

a + lOy J(EY - a)2 - 410 
A=--2-± 2 . 

For the resting state to be quiescent, we clearly want to set a, y, and 10 to give 

stable eigenvalues. Here, we will use the parameters suggested by Rinzel (1977) 

and set 10 = 0.008, a = 0.139, and y = 2.54. This gives the eigenvalues y = 

-0797 ± 0.067;. This means that the fixed point is a focus, and since the real part 

of both eigenvalues is less than 0, we know that the fixed point is stable. Physically, 

the stable fixed point means that the axon is quiescent; it will stay near the fixed 

point until a large enough disturbance moves it away. The current stimulus pulse 

provides this disturbance. What the stability analysis does not tell is us how large 

the current pulse needs to be to cause an action potential. 
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The first step in integrating these equations, after picking the parameters €, a, and 
y, is to select a value for the size of the time step, fl.. In order for Eq. 5.28 to be 
a good approximation to Eq. 5.18, we need to pick fl. to be as small as possible. 
On the other hand, in order to keep the amount of computation small, we want 
to set fl. to be as large as possible. One wcry is to set the value for fl. to be some 
starting value, scry fl. = 0.5. We carry out the iteration according toEq. 5.28. Then, 
we reduce fl. by half and repeat the iteration. If we find that the results of the two 

iterations are approximately the same, then fl. is small enough. Otherwise, reduce 
fl. by half again, and repeat. Keep in mind that setting fl. too large can have nasty 
effects; for example, fixed points that are stable in the differential equation can be 
unstable in the finite-difference approximation if fl. is too large. 
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(C) 

v versus time in the Fitzhugh-Nagumo model of electrical activity in the nerve 
cell. Current of amplitude I is tumed on at time t = 10 and tumed off at t = 20. 
(A) I = 0.02. No action potential occurs. (B) I = 0.03. An action potential. 
(C) I = 0.10. An action potential. 

The iteration according to Eq. 5.28 can be carried out on a computer, or with a 

calculator, or simply with paper and pencil. Hodgkin and Huxley did their numerical 
calculations from much more complicated equations using 1950s-era mechanical 
hand calculators. 

In our numerical experiment, we will start the cell at the stable fixed point v = 0, 

w = O. At time t = 10, we will inject current of amplitude I for 10 time units. Then 
we will tum off the current and allow the system to evolve autonomously. We want 
to find what amplitude I is needed to trigger an action potential. 
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We will start with a current pulse of amplitude I = 0.02. The current is turned 

on at t = 10 and turned off at t = 20. The figure on the previous page shows 
transmembrane voltage v versus time; there is a small deflection in the voltage, 

which retums to its resting value by t = 80. In contrast, when a slightly larger 

current is given, I = 0.03, the voltage deflection is much larger and lasts much 

longer. This is an action potential. Increasing the current further to I = 0.10 does 

not change the amplitude of the action potential by very much. 

Equation (5.26) is true only in the limit 11 ~ o. For 11 > 0, the equation is only an 

approximation. One way to make the approximation good is to use very small 11. 

Another way, beyond the scope of this text, is to use more accurate methods for 
numerical integration, such as the Runge-Kutta method (Press et al. 1992), instead 
of the simple Euler method. 

5.9 ADVANCED TOPIC: DYNAMICS IN THREE OR 
MORE DIMENSIONS 

In the real world, it is unusual to have only a small number of interacting ele­
ments. Rather, there are complex networks of interactions. For example, consider 
the food webs in ecological systems, the multiple synaptic connections in neural 
networks, or the competition between several businesses in economic systems. 
In all these circumstances, theoretical models formulated as linear and nonlin­
ear differential equations with more than two variables have been proposed to 
account for the complex interactions. Even though a great deal of effort has been 
expended in trying to understand such systems, there remain huge gaps in our 
mathematical understanding of the dynamics in nonlinear differential equations 
with three or more interacting variables. 

Although much is known about the dynamics in the neighborhood of 
steady states, and about the bifurcations that arise as a consequence of para­
metric changes, fundamental mathematical questions involving the classification 
and the geometry of asymptotic behaviors in the limit t -+ 00 are still 
open. In the absence of a complete mathematical theory, there has been a 
lot of attention on the analysis of particular nonlinear equations. In this sec­
tion we first give examples of some three-dimensional equations that display 
chaotic dynamics. Then we show how results concerning analysis of stability in 
first- and second-order differential equations generalize to higher-dimensional 
systems. 


