Universidad de la República Facultad de Ciencias Centro de Matemática

Módulos-Generalidades

Notas adaptadas por Mariana Haim para el curso "Anillos y Módulos" 2021.

Durante todo el capítulo A denotará un anillo cualquiera.

Definición 0.0.1. Un A-módulo a izquierda M es una terna $(M, +, 0, \cdot)$ donde

- (M, +, 0) es un grupo abeliano,
- $\cdot: A \times M \to M$ es una función (que llamaremos *acción* del anillo sobre el módulo) que verifica, para todo $a,b \in A,\ m,n \in M$:
 - $(1) \ a \cdot (m+n) = a \cdot m + a \cdot n,$
 - $(2) (a+b) \cdot m = a \cdot m + b \cdot n,$
 - $(3) (ab) \cdot m = a \cdot (b \cdot m),$
 - (4) $1_A \cdot m = m$.

Ejemplo 0.0.1. El anillo A es un A-módulo a izquierda si se considera con la acción regular, es decir, la acción dada por el producto de A.

Observación 0.0.1. 1. De (1) se deduce que para cada $a \in A$, la función $\varphi_a : M \to M$ definida por $\varphi_a(m) = a \cdot m$ es un morfismo de grupos.

- 2. El conjunto $\operatorname{End}(M) = \{f : M \to M \mid f \text{ es morfismo de grupos}\}$ es un anillo con la composición. Las igualdades (2), (3) y (4) pueden interpretarse como que la función $F : A \to \operatorname{End}(M)$ definida por $F(a) = \varphi_a$ es un morfismo de anillos. 1
- 3. Análogamente se define A-módulo a derecha mediante una acción a derecha $M \times A \to M$.
- 4. Si $A = (A, +, \cdot, 0, 1)$ es un anillo y se considera la operación $\cdot^{op} : A \times A \to A$ definida por $a \cdot^{op} b = b \cdot a$, entonces $A^{op} = (A, +, \cdot^{op}, 0, 1)$ es otro anillo que llamamos anillo opuesto. Se tiene $(A^{op})^{op} = A$ y $A^{op} = A$ si y sólo si A es conmutativo. Si (M, +, 0) es un grupo abeliano y $\cdot : A \times M \to M$ y $\star : M \times A^{op} \to M$ son dos acciones vinculadas por $a \cdot m = m \star a$, es fácil ver que las siguientes afirmaciones son equivalentes:
 - $(M, +, 0, \cdot)$ es un A-módulo a izquierda,
 - $(M, +, 0, \star)$ es un A^{op} -módulo a derecha.

En particular si A es conmutativo, todo A-módulo a izquierda es A-módulo a derecha y recíprocamente (y en este caso hablaremos sencillamente de A-módulos). Además esto nos muestra que no perdemos generalidad al demostrar los teoremas para módulos a izquierda.

5. Si M es un A-módulo a izquierda y $m \in M$, entonces $0 \cdot m = 0$ y $(-1) \cdot m = -m$. En efecto,

$$0 \cdot m = (0+0) \cdot m = 0 \cdot m + 0 \cdot m$$
 y $(-1) \cdot m + 1 \cdot m = 0 \cdot m = 0$.

¹Es un ejercicio del práctico probar que un A-módulo "es lo mismo" que un morfismo de anillos $A \to \operatorname{End}(M)$ donde M es un grupo abeliano.

Veamos más ejemplos.

Ejemplos 0.0.1. 1. Si $A = \mathbb{k}$ es un cuerpo, entonces un \mathbb{k} -módulo a izquierda es exactamente un \mathbb{k} -espacio vectorial.

- 2. Si A es un anillo y consideramos el grupo abeliano $A^n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A\}$, se tiene que A^n es un $M_n(A)$ -módulo a izquierda y también a derecha considerando el producto usual (a izquierda y a derecha respectivamente) de una matriz por un vector.
- 3. Si \mathbb{k} es un cuerpo y $X \in M_n(\mathbb{k})$, se tiene que el grupo abeliano \mathbb{k}^n es un $\mathbb{k}[x]$ -módulo a izquierda mediante $p \cdot v = p(X)v$, donde si $p = \sum_{i=0}^r a_i x^i$, se define $p(X) = \sum_{i=0}^r a_i X^i$ (con $X^0 := Id_n$).
- 4. Todo grupo abeliano es un \mathbb{Z} -módulo. En efecto, si G es un grupo abeliano, la operación usual $\mathbb{Z} \times G \to G$, definida por $(n,g) \mapsto ng$ dota a G de una estructura de \mathbb{Z} -módulo. Además, por definición todo \mathbb{Z} -módulo es un grupo abeliano. Esto muestra que un \mathbb{Z} -módulo "es lo mismo" que un grupo abeliano.
- 5. Si M es un A-módulo a izquierda y $S \neq \emptyset$ es un conjunto, el grupo de funciones M^S tiene estructura de A-módulo a izquierda definiendo $(a \cdot \varphi)(s) = a \cdot \varphi(s)$.
- 6. Si A es un anillo, entonces A[[x]] es un A[x]-módulo donde la acción es la restricción de la acción regular de A[[x]], con la identificación $A[x] \subset A[[x]]$.
- 7. (Para los que cursaron Cálculo 3). Sea X una variedad diferenciable. Notemos $C^{\infty}(X)$ al anillo de las funciones diferenciables $X \to \mathbb{R}$ con las operaciones punto a punto. El conjunto de las n-formas diferenciales en X, notado $\Omega^n(X)$, es un $C^{\infty}(X)$ -módulo: si $f \in C^{\infty}(X)$ y $\omega \in \Omega^n(X)$, se define $f \cdot \omega$ como $(f \cdot \omega)(p) = f(p)\omega(p)$ para todo $p \in X$.

A partir de ahora, salvo mención explícita, M será un A-módulo a izquierda. Es claro que los enunciados para A-módulos a izquierda tendrán su versión para A-módulos a derecha, a partir de la observación 0.0.1.4. Además, a menudo notaremos am en lugar de $a \cdot m$, para $a \in A, m \in M$.

Definición 0.0.2. Sea M un A-módulo. Un subconjunto $N\subseteq M$ se dice submódulo de M si :

- $(1) \ 0 \in N,$
- (2) $x + y \in N$ para todo $x, y \in N$,
- (3) $an \in N$ para todo $a \in A, n \in N$.

Observación 0.0.2. 1. Es un ejercicio sencillo verificar que son equivalentes, para un A-módulo M y un subconjunto $N \subseteq M$:

- N es un submódulo de M,
- N es un subgrupo de M que es A-estable (es decir, que cumple (3)),
- lacktriangle N con las operaciones de M restringidas a N es un A-módulo.
- 2. En el caso particular en que se considera A como A-módulo a izquierda con la acción regular, un subconjunto $N\subseteq A$ es un submódulo si y sólo si es un ideal a izquierda. Si además A es conmutativo, entonces los submódulos son los ideales biláteros.
- 3. $\{0\}$ y M son submódulos de M y se dicen triviales.

Definición 0.0.3. Sean M y N A-módulos. Una función $f:M\to N$ es un morfismo de A-módulos, o simplemente A-lineal si verifica:

- (1) f(m+n) = f(m) + f(n) para todo $m, n \in M$,
- (2) $f(a \cdot m) = a \cdot f(m)$ para todo $a \in A, m \in M$.

Si f es inyectivo o sobreyectivo, se dice que es respectivamente un monomorfismo o un epimorfismo de A-módulos.

Si $f: M \to N$ es un morfismo de A-módulos invectivo y sobreyectivo, se dice que es un isomorfismo de A-módulos y que M y N son A-módulos isomorfos o isomorfos via f.

Si $f: M \to M$ se dice que es un *endomorfismo*. Notamos $\operatorname{End}_A(M)$ al conjunto de endomorfismos de M.

Observación 0.0.3. 1. Un morfismo de A-módulos en particular es morfismo de grupos (abelianos).

- 2. Si $A = \mathbb{k}$ es un cuerpo, entonces un morfismo de \mathbb{k} -módulos es exactamente una transformación \mathbb{k} -lineal.
- 3. Se verifica fácilmente que la composición de morfismos de A-módulos es un morfismo de A-módulos, y que la identidad también lo es. En particular $\operatorname{End}_A(M)$ es un anillo con la suma punto a punto y la composición.
- 4. Si f es un isomorfismo y $g:N\to M$ es su inversa, entonces g también es un morfismo de A-módulos.

Proposición 0.0.1. Sea $f: M \to N$ morfismo de módulos. Si $H \subseteq N$ es un submódulo, entonces $f^{-1}(H) \subseteq M$ también lo es. Si $K \subseteq M$ es un submódulo, entonces $f(K) \subseteq N$ también lo es. En particular, $\text{Ker } f = f^{-1}(\{0\}) \subseteq M$ e $\text{Im } f = f(M) \subseteq N$ son submódulos.

Demostración. Sea $H \subseteq N$. Sabemos que $f^{-1}(H) \leq M$. Además, si $x \in f^{-1}(H)$ y $a \in A$ se tiene $f(ax) = af(x) \in H$ porque $f(x) \in H$ que es un submódulo. Se deduce que $ax \in f^{-1}(H)$.

Por otra parte, si $K \subseteq M$, sabemos que $f(K) \leq N$. Además, si $x \in K$ y $a \in A$, $af(x) = f(ax) \in f(K)$ porque $ax \in K$ por ser éste un submódulo.

Definición 0.0.4 (Producto directo y suma directa). Sean I un conjunto no vacío y $\{M_i\}_{i\in I}$ una familia de A-módulos. El producto directo de $\{M_i\}_{i\in I}$ es el producto cartesiano $\prod_{i\in I} M_i$ con las operaciones

$$(m_i)_{i \in I} + (n_i)_{i \in I} = (m_i + n_i)_{i \in I},$$
 $a(m_i)_{i \in I} = (am_i)_{i \in I},$

para todo $a \in A$, $(m_i)_{i \in I}$, $(n_i)_{i \in I} \in \prod_{i \in I} M_i$. Es fácil verificar que $\prod_{i \in I} M_i$ con estas operaciones es un A-módulo.

Para cada $m \in \prod_{i \in I} M_i$, se define el soporte de m, sop $(m) = \{j \in I \mid m_j \neq 0\}$, y es fácil ver que el subconjunto

$$\left\{ m \in \prod_{i \in I} M_i \mid \text{sop}(m) \text{ es finito} \right\}$$

es un submódulo de $\prod_{i \in I} M_i$. Lo denotamos $\bigoplus_{i \in I} M_i$ y lo llamamos suma directa (o suma directa externa, como hacíamos en grupos) de la familia.

- Observación 0.0.4. 1. Si en la definición de arriba el conjunto I es finito, la suma directa y el producto directo coinciden.
 - 2. Las proyecciones naturales $p_j: \prod_{i\in I} M_i \to M_j$ definidas por $p_j((m_i)_{i\in I}) = m_j$ son epimorfismos de módulos y las inyecciones naturales $\iota_j: M_j \to \bigoplus_{i\in I} M_i$ definidas mediante $(\iota_j(m))_i = \left\{ \begin{array}{ll} m & \text{si } i=j \\ 0 & \text{si no} \end{array} \right.$ son monomorfismos de módulos.

Los pares $\left(\prod_{i\in I} M_i, (p_i)_{i\in I}\right)$ y $\left(\bigoplus_{i\in I} M_i, (\iota_i)_{i\in I}\right)$ verifican propiedades universales que presentamos a continuación.

Proposición 0.0.2 (Propiedad universal de la suma directa y del producto directo). ² Sea $\{M_i\}_{i\in I}$ una familia de A-módulos.

1. Dados un A-módulo N y una familia de morfismos de A-módulos $\{f_i: N \to M_i\}_{i \in I}$, existe un único morfismo de A-módulos $\varphi: N \to \prod_{i \in I} M_i$ que hace conmutar la siguiente familia de diagramas, para todo $j \in I$:

$$\prod_{i \in I} M_i \xrightarrow{p_j} M_j$$

$$\varphi \uparrow \qquad \qquad f_j$$

$$N$$

2. Dados un A-módulo N y una familia de morfismos de A-módulos $\{f_i: M_i \to N\}_{i \in I}$, existe un único morfismo de A-módulos $\psi: \bigoplus_{i \in I} M_i \to N$ que hace conmutar la siguiente familia de diagramas, para todo $j \in I$:

$$M_j \xrightarrow{\iota_j} \bigoplus_{i \in I} M_i$$
 $f_j \qquad \psi$
 N

Demostración. Para el producto directo, es fácil ver que la única posible función está dada por $f(n)_i = f_i(n)$ para todo $n \in N$ y que esto define un morfismo de módulos.

Para la suma directa, es fácil ver que la única posible función está dada por $f((m_i)_{i\in I}) = \sum_{i\in I} f_i(m_i)$ y que esto define un morfismo de módulos.

Es fácil probar que la intersección de una familia no vacía de submódulos es un submódulo, lo que posibilita la siguiente definición.

Definición 0.0.5 (Submódulo generado). Sea M un A-módulo y $S \subseteq M$ un subconjunto. El submódulo generado por S es $\langle S \rangle := \bigcap \{N \mid N \text{ es submódulo de } M, N \supseteq S \}$.

Observación 0.0.5. 1. Si $S \subseteq M$ es un subconjunto y $N \subseteq M$ es un submódulo que contiene a S, entonces N contiene a $\langle S \rangle$. En otras palabras el submódulo generado por S es el menor (con respecto a \subseteq) entre los submódulos de M que contienen a S.

2. Si $S = \emptyset$, entonces $\langle S \rangle = \{0\}$.

 $^{^2}$ Es un ejercicio del práctico 6 probar que las propiedades universales caracterizan al producto directo y a la suma directa, en el sentido que cualquier otro par que la satisfaga va a ser naturalmente isomorfo a estos.

3. Si
$$S \neq \emptyset$$
, $\langle S \rangle = \left\{ \sum_{i \in I} a_i m_i \mid I \text{ es un conjunto finito, } a_i \in A, m_i \in S \ \forall i \in I \right\}$.

Definición 0.0.6. Sea M un A-módulo y $S \subseteq M$ un subconjunto. Si $M = \langle S \rangle$, decimos que S es un generador de M, o que S genera a M. Si existe $S \subseteq M$ generador finito, decimos que M está finitamente generado.

En el caso particular en que existe $m \in M$ tal que $\{m\}$ genera M, se dice que M es un A-módulo $c\'{i}clico$ y se nota M = Am.

Definición 0.0.7. Sea M un A-módulo y $\{M_i\}_{i\in I}$ una familia de submódulos de M. Se define la suma de los submódulos M_i como

$$\sum_{i \in I} M_i = \left\langle \bigcup_{i \in I} M_i \right\rangle$$

Observación 0.0.6. 1. Es claro que $\sum_{i \in I} M_i = \left\{ \sum_{i \in I} m_i \mid I \text{ es un conjunto finito}, m_i \in M_i, \forall i \in I \right\}.$

- 2. A partir de las inclusiones $\operatorname{inc}_j: M_j \to M$ y usando la propiedad universal de la suma directa, se tiene un (único) morfismo $\varphi: \bigoplus_{i \in I} M_i \to \sum_{i \in I} M_i$ tal que $\varphi \circ \iota_j = \operatorname{inc}_j$. Además φ resulta sobreyectivo. Notar que explícitamente $\varphi\left((m_i)_{i \in I}\right) = \sum_{i \in I} m_i$.
- 3. Si φ es inyectivo, la suma es isomorfa a la suma directa y se dice que la suma es directa. En este caso, cada $m \in \sum_{i \in I} M_i$ se puede escribir de manera única como una suma finita de $m_i \in M_i$. De hecho, son equivalentes las siguientes afirmaciones para una familia $\{M_i\}_{i \in I}$ de submódulos de M.
 - a) $\bigoplus_{i \in I} M_i \cong \sum_{i \in I} M_i$ via $\varphi,$
 - b) Para cada $m \in \sum_{i \in I} M_i$, existe una única familia $\{m_i \in M_i \mid i \in I\}$ de soporte finito tal que $m = \sum_i m_i$,
 - c) $M_i \cap \sum_{j \neq i} M_j = \{0\}$ para todo $i \in I$.

(La prueba es análoga a la que se hace para espacios vectoriales).

La noción de grupo cociente en grupos abelianos se extiende al contexto de A-módulos. En efecto, si $N \subseteq M$ es un submódulo, como en particular es un subgrupo, se tiene que $\frac{M}{N}$ es un grupo abeliano. El siguiente lema asegura que la acción de A induce una acción en el cociente.

Lema 0.0.3. Sean M un A-módulo, $N \subseteq M$ un submódulo, $a \in A, m, m' \in M$. Si $m \equiv m' \pmod{N}$ entonces $am \equiv am' \pmod{N}$.

Demostración. En efecto, si $m-m'\in N$, entonces $am-am'=a(m-m')\in N$ por ser N un submódulo. \Box

A partir del lema, es claro que está bien definir la operación $\cdot: A \times \frac{M}{N} \to \frac{M}{N}, \ a \cdot \overline{m} = \overline{am}$. Se obtiene una estructura de A-módulo en el cociente $\frac{M}{N}$ y un epimorfismo de A-módulos $\pi_N: M \to \frac{M}{N}$, que verifican la siguiente propiedad universal:

Teorema 0.0.4 (Propiedad universal del cociente). Sea $f: M \to M'$ un morfismo de A-módulos y sea $N \subseteq M$ un submódulo. Si $N \subseteq \operatorname{Ker} f$, entonces existe un único morfismo $\hat{f}: \frac{M}{N} \to M'$ que hace conmutar el siguiente diagrama:

$$\begin{array}{c}
M \longrightarrow M' \\
\pi_N \downarrow \qquad \hat{f} \\
\frac{M}{N}
\end{array}$$

Además, se tiene Im $\hat{f} = \text{Im } f \ y \text{ Ker } \hat{f} = \frac{\text{Ker } f}{N}$.

Demostraci'on. Sabemos que existe un único morfismo de grupos que hace conmutar el diagrama y verifica las condiciones en el núcleo y la imagen. Es inmediato verificar que dicho morfismo preserva la acci\'on.

Al igual que en grupos abelianos, se deducen los siguientes resultados conocidos como teoremas de isomorfismo.

Corolario 0.0.5 (Teoremas de isomorfismo). Sea M un A-módulo.

- 1. Si $f: M \to N$ es un morfismo de A-módulos, entonces $\frac{M}{\operatorname{Ker} f} \cong \operatorname{Im} f$.
- 2. Si $H, K \subseteq M$ son submódulos, entonces $\frac{H+K}{H} \cong \frac{K}{H \cap K}$.
- 3. Si $H \subseteq K \subseteq M$ son dos a dos submódulos, entonces $\frac{M/H}{K/H} \cong \frac{M}{K}$.
- 4. Si $f: M \to N$ es un morfismo de A-módulos, y $H \subseteq M, K \subseteq N$ son submódulos con $f(H) \subseteq K$, entonces existe un único morfismo de A-módulos $\tilde{f}: \frac{M}{H} \to \frac{N}{K}$ que hace conmutar el siguiente diagrama:

$$M \xrightarrow{f} N$$

$$\pi_{H} \downarrow \qquad \downarrow \pi_{K}$$

$$\frac{M}{H} \xrightarrow{\tilde{f}} N$$

Demostración. Para 1, 2 y 3, ya sabemos que hay un isomorfismo de grupos. Basta verificar que preserva la acción. Para 4, ya sabemos que hay un tal morfismo de A-módulos. De nuevo, basta verificar que preserva la acción.

Teorema 0.0.6. Sean M un módulo y $N \subseteq M$ un submódulo. Existe una correspondencia biyectiva entre los conjuntos:

$$\mathcal{F}_1 = \left\{ L \subseteq \frac{M}{N} \text{ subm\'odulo} \right\} \qquad y \qquad \mathcal{F}_2 = \left\{ K \subseteq M \text{ subm\'odulo} \mid K \supseteq N \right\}$$

que preserva la inclusión.

Demostración. La prueba del resultado análogo para grupos puede adaptarse fácilmente a este contexto, usando la proposición 0.0.1.