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Abstract. Classical burster models are based on a fast sys- 
tem that either oscillates or is quiescent, depending on tem- 
porarily fixed values of slow variables. In a study of the 
lobster heart ganglion, we found a new type of burster for 
which the fast system is globally stable for all relevant fixed 
values of the slow variables. We describe how this burster 
works and speculate on its biological significance. 

1 Introduction 

Bursting neurons exhibit periods of oscillation separated by 
periods of quiesence. We present here a bursting model of 
a new type, one that is centered on excitability rather than 
oscillation. We came upon the new type of burster in a study 
of biophysically motivated models for bursting cells in the 
cardiac ganglion of the lobster. This leads us to expect that 
the new type of burster might prove to be physiologically 
significant. 

We begin with a mathematical perspective. (Later we 
shall take a more biophysical point of view.) Classical math- 
ematical explanations of bursting behavior (see, for example, 
Rinzel and Lee 1987; Rinzel and Ermentrout 1989) consider 
situations in which variables can be divided into two cate- 
gories, fast and slow. The first step is to examine the fast 
variables when the slow variables are held at fixed values 
and hence temporarily regarded as parameters. Depending 
on these parameters, two types of behavior are found. Typ- 
ically, for some parameter values periodic oscillations are 
seen while for others the fast system always tends to a 
steady state. Bursting occurs when the slow parameters are 
allowed to vary according to their governing equations. If  
conditions are appropriate, oscillations in the fast variables 
move the slow variables out of the domain where fast os- 
cillations occur (if the slow variables are temporarily fixed) 
and into the domain where the fast system is at steady state. 
At steady values of the fast variables, however, the slow 
variables ultimately move to the domain corresponding to 
fast oscillations. Bursting thus results from the alternating 
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movement of the slow variables from the domain giving fast 
oscillation to the domain giving a steady state. 

We came upon a new type of burster in efforts to build 
on the results of Av-Ron et al. (1991, 1993), who presented 
a basic biophysical model for bursting neurons. (From now 
on these papers will be referred to as I and II.) These papers 
constitute the first part of a study in neuronal modelling 
whose aim is to determine whether one can select differ- 
ent parameter values for the same basic model in such a 
way that when such model cells are linked into a suitably 
connected small network, then each individual cell would 
exhibit the bursting behavior observed by Friesen (1975a, b) 
in the lobster cardiac ganglion. This particular example is 
regarded as a test case for a general approach. 

There are four bursting cells in the cardiac ganglion of 
the lobster, cells 6-9. After we arrived at specific candidate 
models for each of these, we began to examine them i.n the 
spirit of the classical bursting explanation. We found to our 
surprise that in our cell 9 model, the fast equations did not 
exhibit oscillation for any relevant fixed values of the slow 
variables. There was always a globally stable steady state. 
It therefore seems that our cell 9 burster is of a new type: in 
the absence of fast oscillations when the slow parameters are 
fixed, there seems no relevance to the classical explanation 
for bursting (slow variables move the fast system back and 
forth between oscillation and quiesence). 

How could bursting possibly stem from such a stable 
system? Further examination of the equations gave a clue. 
When we kept the slow variables fixed at various relevant 
values, then the two fast equations form an excitable system. 
That is, even though all perturbations eventually died out, 
and the system inevitably returned to rest, there were impor- 
tant transient effects. Although relatively small perturbations 
to the steady state (the rest state) decayed monotonically, 
superthreshold perturbations fired an action potential after 
which the system indeed returned to rest. Perhaps when the 
slow variables are permitted to vary conditions can be such 
that the excitability threshold can be repeatedly crossed. 

Following up on the surmise just stated, in this paper we 
explore the mechanisms by which bursting can result from 
superimposing suitable slow variation on a fast excitable 
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system. We first examine how a sequence of spikes can 
indeed be generated from such a system, in spite of the fact 
that for the fast system a single triggered spike is expected 
to be followed by a return to rest. Once we explain how 
such a spike sequence can in principal be generated, we then 
solve the problem of why the sequence ceases - to produce 
the quiescent part of the cycle. Finally, we explain why 
the spikes start again. From a biophysical point of view, 
our reasoning rests on the phenomenon of anodal break 
excitation. 

In our concluding discussion, we state why we think that 
the excitable burster is far more than an amusing curiosity 
and may actually play a central role in small neuronal 
networks. 

2 The basic burster model 

In this section we present a basic set of equations for 
modelling bursting neurons, with an eye to applying the 
model to lobster cardiac ganglion cells. For these same 
equations, but for two different sets of parameter values, we 
find two different types of bursters. The first burster is fairly 
conventional, but the second is novel. 

The fundamental equation equates the capacitive current 
(with capacitance Cm) to the sum of an applied current Iapp 
introduced by the experimenter and the total ionic current 

-/'tot: 

CmdV/dt  = Iapp - Itot (1) 

The sodium, potassium and leak currents of the classical 
Hodgkin-Huxley model are supplemented by a calcium- 
dependent potassium current and a calcium current: 

Itot = INa(V, W)+IK(V, W)+IL(V)+IK(Ca)(V, C)+Ica(V, X)(2) 

In describing the currents, we follow a standard approxima- 
tion scheme; see Rinzel (1984). Also see I. Thus 

INa(V, W )  = ~ N a m 3 ( y ) ( 1  -- W ) ( V  - VNa), (3) 

I K ( V  , W )  = - f f K ( W / s ) 4 ( V  - VK), (4) 

IL(V)  = gL(V -- VL). (5) 

In (3-5) gNa, gK, gL stand for maximal ionic conductances, 
while VNa, VK, VL, denote the reversal potentials of the 
corresponding currents. In (3), the steady state sodium ac- 
tivation gate, moo(V), is described by a general sigmoid 
function 

1 
Foo(V; a, Vl/2) = 1 + e - 2 a ( V - v l / 2 )  (6) 

where a controls the sigmoid's steepness and Vl/2 its mid- 
point. In this case 

moo(V) = Foo(V; am, Vm) (7) 

The recovery variable W is described by 

d E _ Woo(V) - w (8) 
dt T(V) 

where the steady state value Woo(V) has a sigmoidal de- 
pendence on voltage, 

Woo(V) = Foo(V ; aw  , Vw ) (9) 

and the relaxation time of recovery ~-(V) is given by 

1 
T(V) = A[eaw(V_Vw ) + e_aw(V_Vw) ] (10) 

This expression for T(V) is based on the assumption that W 
follows first-order kinetics for the transition from an active 
to an inactive state. 

The two additional currents in (2) [i.e. /ca(V, X) and 
IK(Ca)(V, C)] are described somewhat differently from the 
classical ones. The calcium current was shown to ex- 
hibit saturative dependence on extracellular Ca 2§ concentra- 
tion, even at low concentrations (Hagiwara and Takahashi 
1967; Akaike et al. 1978). As is conventional we describe 
/Ca(V, X) by the product of membrane conductance and the 
ion driving force: 

Ica(V, X) = gca X -  Vca(V) (11) 

Here membrane conductance is accounted for by gca, the 
maximal calcium conductance, and X ,  the fraction of open 
calcium channels. To capture saturation, we replace the 
conventional driving force by 

VcaCe 
Vca(V) = (12) 

Ce + K e .  Keoo(V) 

where Vca is the maximal possible driving force, and Ce is 
the external calcium concentration. The term Keoo(V) is a 
sigmoid function of V, given as 

Keoo(V) = Foo(V; aKe, VKe) (13) 

Keoo(V) increases with depolarization and represents the 
decreasing permeability of the channels to inward move- 
ments of calcium as membrane depolarization increases. The 
combined dependence of X and Keoo(V) on the membrane 
potential generates the experimentally observed bell-shaped 
dependence of/Ca on V (Llinas et al. 1981). Accordingly, X 
saturates at higher depolarizations, whereas Keoo(V) con- 
tinues to rise. As a result, Ica first rises owing to an increase 
in X, but then declines owing to a saturation of X and in- 
creasing Keoo(V). (For detailed discussion see Parnas and 
Segel, 1989.) 

The third differential equation in the model describes the 
time course of X: 

d X  _ Xoo(V) - X (14) 
dt ~-x 

Here Xoo(V) stands for the fraction of open channels at 
steady state, and is described by the sigmoid curve 

Xoo(V) = Foo(V ; a x , Vx) (15) 

The last current considered in the model, IK(Ca)(V, C) , 
describes a potassium channel that is activated in a saturative 
manner by intracellular calcium, C. Thus, 

C 
IK(Ca)(V, C)  = gK(Ca) K- - - - - -~ (V  - VK) (16) 
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Our final equation describes the temporal distribution of the 
intracellular calcium concentration. The calcium concentra- 
tion rises due to voltage dependent influx of calcium and 
declines due to lumped removal processes: 

dC C 
= Yca( - I ca (V ,  X ) )  - R c + K,. (17) 

d-"-t 

Here, R stands for the maximal rate of removal and Kr  for 
the corresponding half-saturation constant. 

In modelling the cardiac ganglion, we wish to demon- 
strate that all the ganglion cells can be described by (1)-(17), 
with different cell types corresponding to different parame- 
ter choices. This is not the place for a detailed discussion 
of this matter. For our present purposes, we wish only to 
present two cell types, with their accompanying parame- 
ter sets. These are found in Fig. 1. In accord with Friesen 
(1975a), our model for cell 6 has a burst duration of approx- 
imately 0.4 s with a frequency of 50 impulses per second; 
the bursting duration of cell 9 is about 1 s, with a frequency 
of 25 impulses per second. 

Our basic model for bursting consists of four differential 
equations (1), (8), (14) and (17) for the dependent variables 
V, W, X,  and C. Of these, the first two are fast, with 
intrinsic time scales of milliseconds. The last two are slow, 
with intrinsic time scales, respectively, of tens and hundreds 
of milliseconds. Thus, to unravel the mechanism of bursting, 
we should be able to perform the standard simplification of 
examining the V-W phase plane for various fixed values 
of the slowly changing variables C and X.  When this was 
done for the model of cell 6 it was found that, in essence, 
there was precisely one attractor, either a stable steady state 
or a stable oscillation. (For our particular model of cell 6, 
there is a narrow parameter range at the beginning of the 
burst where there are 3 steady states; this does not modify 
our line of argument.) 

Most bursting models are based on bistable fast dynam- 
ics, but essentially no bistability was found in our model 
for cell 6. We now briefly discuss some implications of the 
absence of bistability. 

It can be shown that a single slow equation does not 
suffice to give bursting if the fast equations always have 
a unique attractor, as in the situation here. Suppose for 
definiteness that the attractor is an oscillator for relatively 
small values of the single slow variable. (This is the case 
in the present model if X is temporarily held fixed.) Sup- 
pose further that when the fast variables oscillate, the slow 
variable (C in the present case) increases beyond the ap- 
propriate threshold so that the sole attractor is now a steady 
state. This corresponds to the quiescent state of the burst. 
If  the slow variable decreases when the fast variables are 
quiescent, then the threshold will be crossed again, and 
oscillations will recommence. But to have the possibility 
of independently regulating the length of the burst and the 
length of the quiescent period, there must be a way to keep 
the slow variable decreasing (increasing) after it has de- 
creased (increased) past the oscillation-quiesence threshold. 
In particular, without such persistence (inertia is another 
good term) it is likely that the burst will consist of only a 
single spike. 

Analogy with the spring equation in mechanics correctly 
suggests that a first-order equation for the slow variable 
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Fig. 1. Bursting behavior of  model  cells, 6 and 9. Graphs were obtained by 
numerically solving the model equations of system (1)-(17) by  means of 
fourth-order Runge-Kutta methods. Parameters for cell  6: Cm = 1/zF/cm 2, 

gNa = 100, VNa = 55, VK = --72, s = 1, gL = 0.3, VL = --60, am = 
0.055, Vm = - 3 0 ,  aw = 0.045, Vw = - 4 7 ,  A = 0.02, "Vca = - 1 8 0 ,  
Ce = 10#M,  Ke = 100, aKe = 0.04, VKe = 60, a x  = 0.18, Vx  = --50, 
~-x = 50ms,  Kd = 0 . 5 # M ,  K r  = 0 .5 / tM,  Yca = 0 . 0 0 0 0 2 M / / t A  �9 ms, 
gK(ca) = 11, gK = 8, gca  = 1.7, R = 0 . 0 0 1 9 5 # M / m s .  Cell 9: same as for 
cell  6, except that gK(ca) = 1.9, gK = 50, gca  = 0.86, R = 0.001 # M / m s .  

Units: conductances (mS/cm2), voltages (mV) 

does not exhibit inertia, but that a second-order equation, 
or equivalently a pair of first-order equations, will supply 
inertia. Another way to express the same thought is that a 
pair of suitable equations for the slow variables, but not a 
single equation, can provide appropriate semi-autonomous 
oscillations of these variables that move the fast system 
between quiescence and oscillation in a controllable way. 
Indeed here, as is shown in Fig. 2A, when all four differen- 
tial equations are simultaneously solved, the slow variables 
move in a circuit that brings them alternately in and out of 
the domain where the fast variables oscillate. 

Often, the fast variables exhibit bistability for sets of 
fixed slow variables: quiescent and oscillating attractors co- 
exist. Then "inertia" is supplied by hysteresis (Av-Ron et al, 
1993). 

Returning now to our main line of argument, we note 
that in sharp contrast to the situation for cell 6, for cell 9 
the V - W plane contains a single stable steady state for 
all fixed values of C and X that are encountered during the 
burst. To be precise, Fig. 2B shows that when the full set of 
equations (1)-(17) is solved, the values of C and X for cell 
9 slowly cycle, as do those of cell 6. Suppose, however, that 
C and X are frozen at a point on this cycle; in no case will 
oscillations occur in the fast system for cell 9. In addition, 
note that for certain parameter ranges, there are intermediate 
cases for which a portion of the spikes does correspond to 
oscillations in the frozen fast system, but a portion does 
not. Our models for cells 7 and 8 are of this intermediate 
type (not shown), and even for cell 6, we see from Fig. 2A 
that the last two spikes occur in a stable region of the slow 
system. 

The contrast between Figs. 2A and B exemplifies our 
central question: How can there be bursting when the frozen 
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Fig. 2A,B. Trajectory of (C, X,  V) for model cells. Below the trajectory 
is a plane each point of which describes the stability of the fast system if 
C and X are frozen at their instantaneous values. The plane is dashed or 
solid depending on whether the steady state is unstable or stable. A Model 
cell 6. As expected, the oscillations take place when the trajectory is in the 
unstable domain of the plane. (The last two spikes are an exception; see 
text.) B Model cell 9. Contrary to expectation, even during oscillations the 
projected trajectory is in the stable domain of the plane 

fast system always seems to have a tendency to head toward 
a stable rest state? We now begin our answer to this question. 

3 Behavior of the fast system 

As we have pointed out, the classical path to understanding 
bursting begins with an examination of the fast V - W 
subsystem for fixed C and X. Here this system is composed 
of differential equations (1) and (8) for V and W, wherein 
the calcium-dependent potassium current and the calcium 
current now depend solely on voltage. It is helpful to think 
of the remaining voltage-dependent currents (sodium and 
potassium) as representative depolarizing and hyperpolariz- 
ing agents, for this will be seen to be the key to exploiting 
the findings we make upon examining the fast submodel. 

We depict in Fig. 3 results concerning the effect of vary- 
ing, respectively, the sodium and potassium conductivities 
on the nullclines of the differential equations (1) for V and 
(8) for W. For present purposes, the following observations 
are noteworthy. (i) The nullclines, and hence the behavior 
of the model, are considerably more sensitive to variatioris 
in the potassium conductance than they are to sodium con- 
ductance. (ii) The nullclines intersect once, so that there 
is a single steady-state point. (iii) As is well known, the 
steady-state point is unstable if the intersection is on the 
rising portion of the V nullcline, except very near the ends. 
The steady state is stable if it is on the falling portions 
of the V nullcline. When a stable steady state is near the 
minimum of the nullcline, excitability is found. (Results (i)- 
(iii) also hold for the parameters employed in I.) (iv) For 
our particular model, with "standard" parameter values, it is 
found that stable oscillations exist when the steady state is 

1 -~ -40 -20 0 20 40 

Fig. 3. Effects of changing sodium conductance (A) and potassium conduc- 
tance (B) on the nullclines of the "fast" model with g = 0.046209#M, 
X = 0.127971 #M. Other parameters as in our model for cell 9 

unstable, and in particular for potassium conductances that 
range from 5 to 20 mS/cm 2. 

As a first application of the findings summarized in 
Fig. 3, we note from Fig. 3B that the rest state is glob- 
ally stable for potassium conductances greater than about 
40mS/cm 2. In the cell 9 model of Fig. 1B, the potassium 
conductance is 50 mS/cm 2. The effective potassium conduc- 
tance is even larger, because of the additional presence of 
the calcium-dependent potassium channel. We thus return 
again from a slightly different point of view to the chal- 
lenge with which we concluded the previous section, how 
can we possibly obtain bursting with this strong tendency 
of the system to return to rest? 

4 The second spike: anodal break excitation 

In analyzing the mechanism for the new burster, we start 
with the following question. Suppose that somehow a spike 
is initiated; why should a second spike appear? Answer- 
ing this question will require us to review the well-known 
phenomenon of anodal break excitation (FitzHugh 1961). 

Figure 4A depicts the phase plane of the fast variables 
V and W when C and X are fixed at the values they attain 
just after the first spike in the burst. Let us first examine 
this figure in isolation, as a particular example of V - W 
dynamics given by the differential equations (1) for d V / d t ,  

with the applied current /app equal to zero, and (8) for 
d W / d t .  For the moment, let us disregard the fixed slow 
variables and the role that their modification plays in the 
burst. 

In the phase plane of Fig. 4A, there is a single stable 
steady state, denoted by a circle. Indeed whatever the initial 
conditions, the solution eventually tends permanently to this 
rest state. The heavy dashed line delineates an excitability 
threshold. If initial conditions are above and to the left of 
this line, solutions tend to the rest state without a tendency 
for an overall voltage increase. As shown by trajectory T1, 
for example, even if the voltage initially exceeds rest there 
is a rapid decrease at constant W, followed by a slow shift 
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Fig. 4A,B. Thresholds in the fast (V - W) phase plane. (Here and below, 
graphs are all for cell 9.) The slow variables are fixed at their values just 
after the first spike in the burst. See Fig. 3 for exact values. A Solid lines 
denote the V and W nullclines, while the circle represents the stable steady 
state. A threshold (dashed line) divides the plane into excitable and nonex- 
citable regions - as is illustrated by the trajectories Tl and T2. B The effect 
of a hyperpolarizing applied current (Iapp= -10#  Alcm2) on the steady 
state (circle) and threshold 

of  V and W to their rest values. But if initial conditions are 
such that V and W start below and to the right of  the heavy 
dashed line (e.g., trajectory T2) the corresponding solutions 
first move rapidly to the right, tracing an action potential, 
before they return to rest. 

To demonstrate anodal break excitation let us alter the 
situation in Fig. 4A by instantaneously adding a fixed hy- 
perpolarizing current. Then/app in (1) instantaneously shifts 
from zero to a fixed negative value. As a consequence, the 
V nullcline instantaneously drops vertically by an amount 
larappl, yielding in particular a new rest state at lower values 
of  V and W. (The system will take some time to attain this 
new stable rest state.) Because the new steady state is lower 
(circle), the threshold is also lowered (Fig. 4B). Whenever 
the hyperpolarizing current is turned off, the original stable 
steady state and threshold are immediately regained. But if 
the hyperpolarizing current had been maintained for a suf- 
ficiently long time, V and W would have moved close to 
the steady state that is appropriate for hyperpolarized con- 
ditions. As a result, when the original stable steady state is 
regained, V and W will be in a superthreshold condition, 
and an action potential will be fired. 

We wish to demonstrate that a phenomenon similar to 
the anodal break excitation is responsible for the formation 
of  the second spike in our burster. We will show that the 
changes in C and X provide an effective anodal break 
excitation - not in a direct manner via a temporary externally 
applied hyperpolarizing current, but rather by a temporary 
internally generated hyperpolarizing effect. 

In our model, C' and X affect V and W via the currents 
]'Ca and arK(Ca). Therefore, we focus on the behavior of  these 
two currents. We call these currents controllable, for while 
all currents are, of  course, voltage-dependent, only these 
have additional modulatory factors. 
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Fig. 5A-D. Dynamics between the first and second spikes of the burst. A 
Membrane potential V. B Voltage-dependent activation variable X of the 
calcium channel. C Sum of the inward Ca 2+ current,/ca, and the outward 
calcium-dependent potassium current IK(Ca). (Positive values indicate in- 
ward current.) D Instantaneous rest voltage, i.e., that given by the stable 
steady state of the fast system with C and X fixed at the values that they 
take at the given time 

At the end of  the first spike, the membrane potential is 
strongly hyperpolarized (see Fig. 5A, time = 1.9 s). Since X 
is st i l lhigh (Fig. 5B), /Ca dominates over IK(Ca), and these 
two opposing currents result in a net inward contribution of  
the controllable currents (Fig. 5C). Upon gradual membrane 
repolarization (Fig. 5A), the net inward contribution declines 
(Fig. 5C). Consequently, the V nullcline shifts downward. 
At the same time, X declines from its maximal value, which 
is attained at the peak of  the spike. But since V increases 
during that same time (Fig. 5A), X eventually starts to 
increase again (Fig. 5B, t = 1.93 s). Consequently there is a 
rise in/Ca, which results in a higher net inward contribution 
from fCa and /K(Ca) and hence in an upward shift of  the V 
nullcline at t = 1.93 s (Fig. 5C). 

Figure 5D shows the voltage at the instantaneous (stable) 
steady state point of  the V - W subsystem. This point is 
the intersection of  the V and W nullclines, and the latter 
is unchanged throughout the burst. Thus, the shifts up and 
down of  the V nullcline parallel the shifts in the stable-state 
point that are seen in Fig. 5D. 

The time up to the new rise in this net inward con- 
tribution of  the controllable currents is analogous to the 
time of  administering hyperpolarizing external current in 
the anodal break excitation. Furthermore, the rise in the net 
inward controllable current corresponds to the cessation of  
this hyperpolarizing current. Similarly to anodal break exci- 
tation, shortly after the rise commences V and W enter the 
excitable domain. 
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net outward current takes over. B The control current after the last spike 

In classical anodal break excitation, discontinuities in 
applied hyperpolarizing current bring about virtually instan- 
taneous corresponding jumps in the V nullcline (Fig. 4). 
Here the amount of hyperpolarization changes smoothly but 
relatively rapidly. The motion of the V nullcline is such that 
the actual state (V, W) of the fast system lags in its chase 
of the instantaneous steady state in such a way that after a 
time superthreshold conditions result. (In the simulations of 
Fig. 5 the threshold is crossed at t = 1.944.) Repeated lags 
result in repeated spikes of the burst. 

5 Why the burst stops and why it starts again 

We have seen how an effective anodal break excitation is 
responsible for the generation of a second spike, given that 
a first spike has somehow been triggered. Why is there not 
an indefinite repetition of this process, generating an infinite 
train of spikes? The answer is that there is net calcium 
entry during the spikes. The build up of calcium eventu- 
ally increases the calcium dependent potassium conductance 
so much that the increased potassium outflow leads to a 
dominance of outward current (Fig. 6A). There is such a 
weakening of the repolarization phase of the effective an- 
odal break excitation that eventually an additional spike is 
not generated. This is the beginning of the quiescent phase 
of the burst. 

Figure 6B provides further understanding of the differ- 
ence in behavior between successive spikes on the one hand, 
and after the last spike on the other. In contrast to Fig. 5C, 
comparison of Fig. 6B and Fig. 5C shows that after the last 
spike, the net inward controllable current declines continu- 
ously, so that the "cessation" of the hyperpolarizing effect 
does not occur. 

During quiesence, the dominance of outward current 
leads to a drop in voltage (Fig. 7A), and hence to a decrease 
in X (Fig. 7B), in calcium concentration (Fig. 7C), and in 
the total controllable current IK(Ca) +/Ca. After some time, 
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Fig. 7. Dynamics during the quiescent period and the first spike 

the intracellular calcium concentration drops so far and the 
calcium-dependent potassium current consequently becomes 
so low that inward current dominates. Now voltage begins 
slowly to rise, with a concommitant increase in X and C 
(Fig. 7). Eventually, the anodal break threshold is crossed, 
and the first spike of a new burst is generated. 

6 Discussion 

We stumbled upon a new type of bursting in the course 
of modeling the lobster cardiac ganglion. The novel nature 
of the burst is revealed by the well-known procedure of 
exploiting the fact that two dependent variables (the voltage 
V and the recovery variable W) change on a time scale 
that is much shorter than that of the other two (the calcium 
concentration C and its gating variable X).  In the case of 
interest, the full set of four differential equations has no 
stable steady state; the burst is an oscillatory attractor. By 
contrast, for relevant fixed values of C and X the fast V -  W 
equations always have a globally attracting stable steady 
state. For burster models studied heretofore, one would 
expect the fast equations to have an oscillatory attractor 
for certain ranges of C and X. Without such an attractor, 
it would appear that there would be no way that changes 
in C and X could generate the train of voltage spikes 
that constitute the active phase of the burst. Nonetheless, 
we show that such a train indeed can be generated, by a 
mechanism closely related to anodai break excitation. 

The model excitable burster and the corresponding bio- 
logical excitable burster show great similarity in behavior. 
This suggests that the new type of burster might have bio- 
logical relevance. 
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To appreciate the possible role of  this new type of 
burster, we briefly summarize some relevant properties of 
our model  of  the lobster cardiac ganglion. The control por- 
tion of  the ganglion consists of  four bursting cells of  which 
one, cell 6, was shown in Fig. 2A to exhibit classical bursting 
behavior. Another,  cell 9, exhibits the new excitable type of  
bursting. The other two cells, 7 and 8, display intermediate 
behavior (not shown). 

Sivan et al. (1994, manuscript  submitted) investigated 
the sensitivity of  model  cells 6 and 9 to an applied current 
whose duration was a few milliseconds. They examined sev- 
eral types of  response and always found the same general 
conclusion: cell 9 is very much more easily disturbed than 
cell 6. To give one example,  they tested for the magnitude 
of  current that would stimulate a premature burst. In both 
cases, this was only possible in the latter third of the qui- 
escent period. For  cell  9, a puff of  current was sufficient, 
approximately 10 nA/cm 2. For  cell 6, about twenty times as 
much current was required, a magnitude that is unlikely to 
occur under physiological  conditions. 

Recall that cells 7 and 8 are intermediate in their prop- 
erties between cell 6 and cell 9. Thus, the controlling cells 
of  our model  cardiac ganglion range from one that is hardly 
responsive to the external environment (cell 6) to one that is 
extremely sensitive (cell 9, the excitable burster). Together, 
these four model  cells form a unit that simultaneously ful- 
fills two superficially contradictory requirements. The unit 
may be able to perform adequately in the face of  the mal- 
functioning or death of  one of  its cells, or in the face of  an 
inappropriate input. But this robustness is not at the price of  
a complete lack of  sensitivity. Especially by virtue of  cell 9, 
the unit can alter its behavior in response to external signals 
that aim to modulate  cardiac output. 

The different mechanisms of  bursting are fully in accord 
with the different behaviors of  cells 6 and 9. Cell 6 has a 
mind of  its own. Except  in transition stages, its fast system 
knows what it wants to do - either oscillate or be quiescent. 
By contrast, cell 9 is always sensitive to perturbation, for 
cell 9 ' s  fast system is always near the border between 
oscillation and quiesence. It could well be of  significance 
that this representative model  ganglion is controlled by a 

linked group of  cells whose individual behavior ranges from 
imperturbable to excitable. 

Acknowledgement. Thanks to G. de Vries for valuable comments on an 
earlier version of the manuscript. 

Note added in proof: In Figs. 5C, 6B and 7D, the control current at time 
t is calculated using the steady state voltage at that time. This approximate 
control current is a good analog of Iapp in an anodal break excitation. 
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