Técnicas Astronómicas

Clase 9: Espectroscopía

Teórico: Cecilia Mateu (con algún agregado de G. Tancredi)

Schematic Spectrograph

Slit Spectrographs

- Entrance Aperture: A slit, usually smaller than that of the seeing disk
- Collimator: converts a diverging beam to a parallel beam
- **Dispersing Element**: sends light of different colors into different directions
- Camera: converts a parallel beam into a converging beam
- **Detector**: CCD, IR array, photographic plate, etc.

A Schematic Diagram of a Slit Spectrograph

Types of Spectrographs

- By type of dispersing element:
 - Grating (transmission or reflection)
 - Prism (rare, except as a cross-dispersor)
 - Grism = grating on a prism
 - Narrow-band imaging
 - Interferometry

- By geometry:
 - Long-slit or multislit
 - Aperture of multi-fiber
 - Integral field units (IFU): lenslets or fiber bundles
 - Tunable imagers (e.g., Fabry-Perot)

Espectroscopía

- Distintos Elementos Dispersores
 - Prisma Objetivo
 - Rendija-larga (Long-slit)
 - Grisma (<u>Gr</u>ating+Pr<u>ism</u>)
 - Espectrógrafos Echelle
 - Espectrógrafos Multi-Objeto (MOS=Multi-Object Spectrographs)
 - IFUs: Integral Field Unit Spectrographs

Dispersers

Equilateral Dispersing Prism

Prisms: disperse light into a spectrum because the index of refraction is a function of the wavelength. Usually: n(blue) > n(red).

Diffraction gratings: work through the interference of light. Most modern spectrographs use diffraction gratings. Most astronomical spectrographs use *reflection* gratings instead of *transmission* gratings.

A combination of the two is called a *Grism.*

Diffraction Gratings

Diffraction gratings are made up of very narrow grooves which have widths comparable to a wavelength of light. For instance, a 1200g/mm grating has a groove width of about 833nm. The wavelength of red light is about 650nm. Light reflecting off these grooves will interfere. This leads to dispersion.

Espectroscopía

Elemento Dispersor: separa el haz incidente de manera que cada haz monocromático λ tiene un ángulo de salida θ diferente

La dispersión angular es :

 $\frac{d\theta}{d\lambda}$ indica la separación angular resultante $d\lambda$ por intervalo de λ

 $d\lambda$

 \overline{dx}

El espectrógrafo además debe enfocar diferentes haces incidentes de la misma λ en el mismo punto

es la **dispersión lineal**, i.e. en el plano del detector (plano focal)

Resolución espectral

Frequency v Lena, Lebrun & Mignard, **Observational Astrophysics**

- R = Poder de resolución (resolving power)
 - baja R ~ 1000 pocos miles
 - media R ~ 10.000 -
 - alta R >50.000 100.000

R ٨λ

Espectroscopía Sin Rendija (Slitless Spectroscopy)

Prisma Objetivo

- Se pone un prisma antes del objetivo del telescopio
- Se produce un espectro para cada objeto en el campo del telescopio

Prisma Objetivo

- Pros:
 - Se produce un espectro para cada objeto en el campo, a la vez
 - Útil para sondeos de campo amplio
- Contras:
 - Solapamiento de espectros en campos densos
 - poca dispersión/baja resolución
 - poca transmisión en UV (vidrio)
- Dispersión angular:

Imágenes tomadas con el prisma objetivo en el telescopio Schmidt 1m OAN-Venezuela

Espectroscopía con Rendija (Slit Spectroscopy)

Difracción

Interferencia: doble rendija

• interferencia constructiva cuando la diferencia de fase r2-r1=dsin θ es igual a m λ :

 $m\lambda$

 $\sin\theta$

máximos de

interferencia

Jenkins & White, Fundamentals of Optics

Hyperphysics

Multirendija

 $\alpha =$

 $\delta =$

$$I(\theta) = \frac{\sin^2(\pi\alpha)}{(\pi\alpha)^2} \frac{\sin^2(N\pi\delta)}{(\pi\delta)^2}$$

 $\frac{a \sin \theta}{\lambda} \qquad \begin{array}{l} \theta = \text{projected angle from center of peak} \\ a = \text{slit width} \\ d = \text{distance between slits} \\ \frac{d \sin \theta}{\lambda} \qquad \begin{array}{l} \lambda = \text{wavelength} \\ N = \text{number of slits} \end{array}$

La rejilla de difracción

La rejilla de difracción

Rejillas de Transmisión y de Reflexión

Multiples rendijas - Rejilla de Difracción

- El número N de surcos de la rejilla controla el ancho de los picos
- El espaciamiento d controla la separación de los picos
- El grosor de los surcos, *a*, afecta la amplitud de los picos (controla el ancho de envolvente de difracción)

Fuente bi-cromática

Fuente de luz blanca

- Cuidado: para diferentes órdenes m, distintas λ se pueden solapar
- Rango espectral libre: para un orden dado, el rango de longitud de onda para el que no hay solapamiento con órdenes contiguos
- Se puede utilizar filtros de bloqueo para evitar el solapamiento en un orden dado
- En este tipo de espectrógrafo generalmente el sistema óptico es tal que se detecta el espectro en un sólo orden (... pero, ver espectroscopía Echelle)
- Blazing -> inclinación para concentrar más luz en un orden (a una cierta λ)

Espectroscopía Echelle

 En un espectrógrafo Echelle (escalera) se introduce un elemento dispersor adicional para separar los diferentes órdenes (que no haya solapamiento en λ)

High-resolution spectrographs: KPNO Coude Feed

High-resolution spectrographs: Echelle

Echelle grating: coarse grating (big d) used at high orders (m ~ 100; tan θ_B = 2).

Side and bottom views of 4m echelle spectrograph

29 100 - 200 - 300 -

Kitt Peak 4-m Echelle

Orders are separated by cross

dispersion: using a second

disperser to disperse λ in a

direction perpendicular to the

echelle dispersion.

Resolución

• Teníamos la Ecuación de la Rejilla (Grating Equation)

$m\lambda = d\sin\alpha + d\sin\beta$

• La relación de **dispersión angular** se obtiene diferenciando la Ec. de la Rejilla con respecto a λ

$$\frac{\partial \beta}{\partial \lambda} = \frac{m}{d \cos \beta} \qquad [radianes/Å]$$

- dado un espaciamiento d de la rejilla, para un orden dado la dispersión es constante (no depende de λ)
- La **dispersión lineal** (en el plano del detector) se calcula dividiendo la escala de placa entre la ec. anterior:

$$\frac{\partial \lambda}{\partial l} = s(\frac{\partial \beta}{\partial \lambda})^{-1} \qquad [\text{\AA/mm}]$$

¿Cómo se ve esto en la práctica?

- La configuración rendija (larga o no) + rejilla de difracción es una de las más comunes en los espectrógrafos profesionales
- Se suele llamar espectroscopía de rendija (slit spectroscopy)
- Recordar que el espectro se produce en la dirección perpendicular a la rendija -> dirección de "dispersión"

perpendicular a la rendija dirección de "dispersión"

Espectro tomado con OSIRIS GranTeCan (Downes et al. 2015)

Corte en la dirección de dispersión

Tomado de Notas de Danny Steeghs

Procesamiento

• Se extrae (i.e. se corta) el espectro del objeto en la imagen

- Reducción usual por bias y dark,
- Corrección por curva de respuesta del detector: el flat debe tomar en cuenta la diferencia de respuesta del detector como función de λ ->
- Se extraen espectros en ventanas arriba y abajo del espectro del objeto para sustraer la **contribución del fondo de cielo al espectro**
- Se deben obtener espectros de una lámpara de comparación (e.g. HeArNe) para hacer la calibración el longitud de onda (X -> λ)

Objetos extendidos

- La espectroscopía de rendija larga da información espacial en la dirección a lo largo de la rendija:
 - se obtiene un espectro de cada objeto que caiga en la rendija, a un Y diferente en la dirección espacial en el CCD

Objetos extendidos

• La utilidad de la información espacial es más evidente para objetos extendidos: se obtiene espectroscopía de 1D del objeto (e.g. galaxia) a lo largo de la rendija

Vera Rubin (1983, SciAm)

Vera Rubin (1983, SciAm)

Breve desvío: curva de rotación de galaxias

Espectroscopía MultiObjeto (MOS)

Espectroscopía MultiObjeto (MOS) - Multirendija

cortado de máscaras para OSIRIS GranTeCan

GranTeCan 10m, Roque de Los Muchachos, La Palma

Espectroscopía MultiObjeto (MOS) - Multirendija

- Se cortan rendijas pequeñas (narrow slit) sobre la posición de cada objeto en el plano focal
- Los espectros se producen en diferentes Y según la ubicación de cada rendija

OSIRIS MOS GranTeCan

- Los espectros tienen offsets (corrimientos) diferentes en la dirección de dispersión según la posición X de cada rendija
- No pueden coincidir dos rendijas en el mismo Y — -> si no los espectros quedarían solapados

Espectrógrafos Multi-fibra (Fiber fed Spectrograph)

- Se posiciona una fibra óptica en cada objeto (cientos a pocos miles de fibras)
- Las fibras llevan la luz de cada objeto al espectrógrafo : se.g. (simplificación) se alinean sobre una rendija + rejilla ->>> los espectros salen alineados
- Sólo hay restricción en la distancia mínima a la que pueden estar dos fibras

Espectrógrafos Multi-fibra (Fiber fed Spectrograph)

х

IPHAS star forming region

Espectrógrafos Multi-fibra (Fiber fed Spectrograph)

• En APOGEE - SDSS 2.5m Apache point, las fibras se posicionan manualmente

 En otros, e.g. HectoSpec en MMT unas varillas llevan las fibras y se posicionan robóticamente

IFUs: Integral Field Units

MaNGA Technical Details

- ☆ Dark-time observations
- ☆ Fall 2014 Spring 2020
- ☆ 17 IFUs per 7 deg² plate
- ☆ Wavelength: 360-1000 nm, resolution R~2000
- \bigstar 10,000 galaxies across ~2700 deg², redshift z~0.03
- $rac{1}{2}$ roughly 3-hour dithered exposures
- $\ensuremath{\mathfrak{T}}$ Spatial sampling of 1-2 kpc
- ☆ Per-fiber S/N=4-8 (per angstrom) at 1.5 Re

Bibliografía

- Massey & Hanson (2013) Astronomical Spectroscopy. In: Oswalt T.D., Bond H.E. (eds) Planets, Stars and Stellar Systems. Springer, Dordrecht, pp 35-98
- Frei & Gunn, 1994, AJ, 108, 476
- Bessel, 2005, Annual Reviews in Astronomy & Astrophysics, 43, 293
- Chomey, To Measure the Sky: An Introduction to Observational Astronomy
- Lena, Mignard & Lebrun, Observational Astrophysics