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It 'was shown by the writer on a former occasion1 that the course of a 
claemical reaction, as computed from the laws of chemical dynamics, may, 
in ccrtain circumstances, assume an oscillatory character. 

The case considered led, however, to damped oscillations fading off into 
equilibrium, not to a continued periodic process; and reflections of a 
general character on the kinetics of material transformations2 seemed to 
make the occurrence of undamped oscillations, in the absence of geometri- 
cal causes (surface films, etc.), appear improbable, since i t  seemed to de- 
mand a very special numerical relation between the reaction constants. 
These, in nature, of course stand generally in no obvious relation. 

It is, therefore, somewhat contrary to his first expectations that the 
writer now finds the conditions for undamped oscillations may occur in 
the absence of any geometrical causes in a homogeneous system. 

A case which leads to such an effect is, for example, the following. 
A substance So is present in constant concentration. (This condition 

may be secured either by providing a large excess, or by using a saturated 
solution in the presence of undissolved substance. In the former case the 
system will be homogeneous, in the latter case it will not be. This 
circumstance has no bearing on the course of the reaction to be con- 
sidered except insofar as it provides a constant Concentration of the sub- 
stance So I I f  the system is heterogeneous we shall assume, as on a former 
occasion, that the chemical changes taking place are slow as compared 
with diffusion effects so that these fatter may be left out of account.) 
In this system let a substance SI be formed autocatalytically from the sub- 
'stance So. Since the concentration of So is constant, the rate of forma- 
tion of SI will, in the simplest case, be proportional to the quantity XI 
oi $1 actually present, so that we may write 

mass of SI formed per unit of time3 = a&,. (11 

Let another substance S? be formed from SI in mono-molecular re- 
action, so that we ma37 mite  

mass of Sz formed per unit of time = cX1. (2) 

And furthermore let the substance SZ also influence its own formation 
autocatalytically, so that 

I A, J. Lotka, J.  Phys. Chem., 14, 271 (1910); 2. plzysik. Chem., 72, 508 ( r g ~ o ) ;  
80, 159 (1912); see also Hirniak, ibid. ,  75, 675 (1910); and compare also Lowry and 
John, J. Chem. SOC., 97, 2634 (1910); Rakowski, Z. fihysik. Chem., 57, 321 (1906). 

a Lotks, Phys. Rev., 24,235 (1912); Proc. Am. Acad., 55, 137 (1920); see, in particu- 
lar, footnote r y  on page 145 of the latter reference. 

A t  constant volume; masses being, in that case, proportional to  concentrations. 
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c = QXZ. (3) 

(4) 

Likewise lct SZ decompose in molecular reaction, so that 

If in the second reaction, Sz alone is formed from SI then we have evi- 
mass of Sz decomposed per unit of time = bzX-2. 

dently 

( 5 )  
dxl -- = alXl - n&lXn 
dt 

since, in that case, the amount of SI decomposed is equal to the mass of 
Sz formed. 

We may, however, make the more general supposition that along with 
SZ any other substances are formed in proportional amounts. In that case 
we may write 

(6)  
d x 1  - = aJ, -- blX’1X2 
dt 

where bl is in general different froin (grcater than) az. 
On the other hand, as regards the substance XZ we have 

The course of events in the system under consideration is now defined 

Dividing (7) by (6) we obtain 
by Equations 6 and 7. 

(8) 
dXz - -&(a&, - bJ 
dXi Xa(a1- b J z )  

Integrating, 

Let us put 
bz log XI - azXi 4- a1 log X z  - b,Xz = K .  (10) 

XI  = x1 4- bz/a2 = xl -4- p (1 E> 

Xz = xz + al/bl X Z  + 4. (1 2 )  

Then (IO) becomes 

Gxpanding the logarithms by Taylor’s theorem certain terms are found 
bz log (XI -I- p )  - azxl + ai log ( X Z  + 4 )  - bixz == .K’. (13) 

to cancel out and we have 

1 o g p - -  x12 + x,,3 ...)+ al(logq---- x22 + xg3  
2P2 3P 2q2 3q3 

In  the immediate neighborhood of the origin of xl, xz this 

= constant 
= r2$ say; 
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from which it is seen that near the origin the integral curves (IO) of (8) 
approach the elliptic Eorm (17) .  

More generally the integral curves ( IO) ,  or their equivalent (13 )~  in 
the positive quadrant of XI, XZ, are closed curves of some such form as 
indicated in Fig. r .  

1 

--- 
--.. 

Fig. I .-Diagram showing general character of the integral curves of Equation 8. 
In the positive quadrant of xIxz these are closed curves, contained entirely within 
that quadrant, and intersecting the aces of xlxh orthogonally. Near the origin of ~ 1 x 2  
the curves are very nearly elliptical. 

The solution (IO) enables us to plot Xz as a function of XI. We can 
then plot point for point 

and Equation (6) then takes the form 

from which we obtain by simple quadrature ( e .  g., with the planimeter), 
Ltn expression for t as a function of Xi, or, say 

XI = @I@). (21) 

x2 = @&) ( 2 2 )  

In exactly similar manner we obtain 

thus completing our solution of the system of differential Equations 6,  7. 
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The Character of the Functions @.-It has already been observed 
that within the positive quadrant of XI& (which alone interests us, since 
masses cannot be negative) the integral curves (IO) are closed curves. 

Furthermore, it can be seen by inspection of (6 )  that 

according as 

that is to say, by (12) ,  according as 
< 

x2 5 0. 

A glance at  Fig. I shows that this means the point XlXz travels in 
counter clockwise direction around the integral curves as the process 
represented by (6), ( 7 )  takes its course. 

From this, again, it is plain that QI(t), @ z ( t )  are periodic functions of 
t .  We may, therefore, expand them into Fourier's series. 

X I  = a1(t) = A,  $- A1 cos nt Jr B1 sin ut ) 
(26 )  i + A2 COS 2nt -j- Bz sin 2~1f * . . . .  

Xz +2( t )  = A', + A'1 COS ~t + B'1 s in  nt 
+ Atz cos 2nt + Bt2 sin 212t 1 (27)  
3- . . . .  J 

The constants 92, A, B may be evaluated by substituting (26), ( 2 7 )  in 

We ihus find, in particular, lor 'M. 

(61, (7) and equating coefficients of homologous terms. 

n = && (28 )  
that is to  say, the reaction is oscillating, with a period 

It is interesting to observe that the amplitude of the oscillation, as 
defined by the constants A, B, A', B', depends on the initial masses 
XI, XZ, but the period of oscillation T is independent of these. Hence if 
two systems of the kind here considered be started off simultaneously, but 
from different initial concentrations, they will forever after keep time with 
each other, although one may be making much greater excursions than the 
other. In terms of Fig. I this means, for example, that if one system 
starts from point PI a t  a given instant, the other from point Pz, they will 
periodically pass through PI and PLt simultaneously, though one travels 
in one cycle around the large circuit Pl()lRISIPl the other one around 
the small (nearly) elliptical circuit P2. 
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Two Types of Equilibrium.-It is interesting to note the topography 
of the integral curves about the two equilibrium points. These curves 
have been drawn in dotted lines also in the negative and mixed quadrants 
where they have only a geometrical meaning. 

Around the point 
b 
a2 

a1 

x* = 2 or XI = 0 

Xa = - or xz = o 

the curves form closed contour lines, like those which on a map represent 
a mountain crest or a trough-shaped valley. 

bl 

On the other hand near the point 
X, = o or x1 = - p  
X2 = o or xz = - q  

the curves €allow a course such as the contour lines mar a saddle or col 
in a landscape. 

These features are typical of the two kinds of equilibrium. The crest 
corresponds to a center of oscillation. The saddle point corresponds 
to a position of unstable equilibrium. For details regarding this feature 
llie reader is referred to a previous publication by the writer.l 

Iifiy thmic phenomena are of particular interest in connection with 
biological systems (e. g., heart-beat). An extension of the method here 
set forth, in its application to certain biological systems, will appear in a 
fortlicoming issue of the Proceedings of the National Academy of Sciences. 

Beooxl,YN, N. Y 

[ COWTRIBU'JXON PROM THE \vOT,CO'fT GIBRS MEMOKIAL LABOKAl'OKY, HAKVARD UNI- 
VERSITY. 1 
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This paper is a continualion of extended researches concerning the 
physico-chemical properties of typical compounds o€ carbon. It enunr- 
mates the careful quantitative combustion in an adiabatic calorimeter 
of the following substances, cane sugar, naphthalene, benzoic acid (these 
ss taken as standard substances) ; benzene, toluene, tertiary butyl ben- 
zene, cyclohexanol ; together with methyl, ethyl, propyl, butyl and 
isobutyl alcohols. The main features of the present investigation, 
which lead to the hope that it may be an improvement over earlier 

Lotka, Science Progress, 14, 406 (1920). 


