
2 The basic model 

This chapter aims to make clear the assumptions lying behind 
evolutionary game theory. I will be surprised ifit is fully successful. When 
I first wrote on the applications of game theory to evolution (Maynard 
Smith & Price, 1 973), I was unaware of many of the assumptions being 
made and of many of the distinctions between different kinds of games 
which ought to be drawn. No doubt many confusions and obscurities 
remain, but at least they are fewer than they were. 

In this chapter, I introduc!-! the concept of an 'evolutionarily stable 
strategy', or ESS. A 'strategy' is a behavioural phenotype; i .e .  it is a 
specification of what an individual will do in any situation in which it 
may find itself. An ESS is a strategy such that, if all the members of a 
population adopt it, then no mutant strategy could invade the 
population under the influence of natural selection . The concept is 
couched in terms of a 'strategy' because it arose in the context of 
animal behaviour. The idea, however, can be applied equally well to 
any kind of phenotypic variation, and the word strategy could be 
replaced by the word phenotype; for example, a strategy could be the 
growth form of a plant, or the age at first reproduction, or the relative 
numbers of sons and daughters produced by a parent .  

The definition of an ESS as an uninvadable strategy can be made 
more precise in particular cases; that is, if precise assumptions are 
made about the nature of the evolving population . Section A of this 
chapter describes the context in which an ESS was first defined by 
Maynard Smith & Price ( 1 973), and leads to the mathematical 
conditions (2.4a, b) for uninvadability. The essential features of this 
model are that the population is infinite, that reproduction is asexual, 
and that pairwise contests take place between two opponents, which 
do not differ in any way discernible to themselves before the contest 
starts (i .e . 'symmetric' contests). It  is also assumed that there is a 
finite set of alternative strategies, so that the game can be expressed in 
matrix form; this assumption will be relaxed in Chapter 3. 
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Still using this model of pairwise contests, I then contrast the 
concept of an ESS with that of a population in an evolutionarily 
stable state. The distinction is as follows. Suppose that the stable 
strategy for some particular game requires an individual to do 
sometimes one thing and sometimes another - e.g. to do I with 
probability P, and J with probability 1 - P. An individual with a 
variable behaviour of this kind is said to adopt a mixed strategy, and 
the uninvadable strategy is a mixed ESS. Alternatively, a population 
might consist of some individuals which always do A and others 
which always do B. Such a population might evolve to a stable 
equilibrium with both types present - that is, to an evolutionarily 
stable polymorphic state. The question then arises whether the 
probabilities in the two cases correspond; that is, if the mixed ESS is 
to do I with probability P, is it also true that a stable polymorphic 
population contains a proportion P of individuals which always do I? 
This question is discussed in section A below, and in Appendix D, for 
the case of asexual (or one-locus haploid) inheritance; the more 
difficult but realistic case of sexual diploids is postponed to Chapter 4. 

Section B reviews the assumptions made in the model, and 
indicates how they might be relaxed or broadened. Section C 
considers a particular extension of the model, in which an individual 
is 'playing the field'; that is, its success depends, not on a contest with 
a single opponent, but on the aggregate behaviour of other members 
of the population as a whole, or some section of it. This is the 
appropriate extension of the model for such applications as the 
evolution of the sex ratio, of dispersal, of life history strategies, or of 
plant growth . The conditions for a strategy to be an ESS for this 
extended model are given in equations (2.9). 

A The Hawk-Dove game 

Imagine that two animals are contesting a resource of value V. By 
'value', I mean that the Darwinian fitness of an individual obtaining 
the resource would be increased by V. Note that the individual which 
does not obtain the resource need not have zero fitness. Imagine, for 
example, that the 'resource' is a territory in a favourable habitat, and 
that there is adequate space in a less favourable habitat in which 
losers can breed. Suppose, also, that animals with a territory in a 
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favourable habitat produce, on average, 5 offspring, and that those 
breeding in the less favourable habitat produce 3 offspring. Then V 
would equal 5 - 3 = 2 offspring. Thus V is the gain in fitness to the 
winner, and losers do not have zero fitness. During the contest an 
animal can behave in one of three ways, 'display', 'escalate' and 
'retreat' . An animal which displays does not injure its opponent; one 
which escalates may succeed in doing so. An animal which retreats 
abandons the resource to its opponent. 

In real contests, animals may switch from one behaviour to 
another in a complex manner. For the moment, however, I suppose 
that individuals in a given contest adopt one of two 'strategies'; for 
the time being, I assume that a particular individual always behaves 
in the same way. 

'Hawk' : escalate and continue until injured or until opponent 
retreats. 

'Dove' : display; retreat at once if opponent escalates. If two 
opponents both escalate, it is asumed that, sooner or later, one is 
injured and forced to retreat. Alternatively, one could suppose that 
both suffer some injury, but for the moment I am seeking the simplest 
possible model . Injury reduces fitness by a cost, C. 

Table 1. Payoff s for 
Hawk-Dove game 

H 
D 

H 
!(V-C) 

o 

D 

V Vl2 

Writing H and D for Hawk and Dove, it is now possible to write 
down the 'payoff matrix' shown in Table 1 .  In this matrix, the entries 
are the payoffs, or changes of fitness arising from the contest, to the 
individual adopting the strategy on the left, if his opponent adopts 
the strategy above . Some further assumptions were made in writing 
down the matrix, as follows: 

(i) Hawk v .  Hawk Each contestant has a 50% chance of 
inj uring its opponent and obtaining the resource, V, and a 50% 
chance of being injured. Thus it has been assumed that the factors, 
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genetic or otherwise, determining behaviour are independent of those 
which determine success or failure in an escalated contest. Later, in 
Chapter 8, I discuss contests in which differences, for example in size, 
which influence success in an escalated contest can be detected by the 
contestants. 

(ii) Hawk v. Dove Hawk obtains the resource, and Dove 
retreats before being injured. Note that the entry of zero for Dove 
does not mean that Doves, in a population of Hawks, have zero 
fitness: it means that the fitness of a Dove does not alter as a result of a 
contest with a Hawk. 

In the imaginary example, described above, of a contest over a 
territory, the fitness of a Dove, after a contest with a Hawk, would be 
3 offspring. 

(iii) Dove v. Dove The resource is shared equally by the two 
contestants. If  the resource is indivisible, the contestants might waste 
much time displaying; such contests are analysed in Chapter 3 .  

Now imagine an  infinite population of individuals, each adopting 
the strategy H or D, pairing off at random. Before the contest, all 
individuals have a fitness Woo 

Let p = frequency of H strategists in the population, 

and 

W(H), WeD) = fitness of H and D strategists respectively, 

E(H,D) = payoff to individual adopting H against a D 
opponent (and a similar notation for other 
strategy pairs). 

Then if each individual engages in one contest, 

W(H) = Wo+p E(H,H)+ (l -p) E(H,D), } 
WeD) = Wo+p E(D,H ) + ( l -p) E(D,D). 

(2. 1 )  

I t  is then supposed that individuals reproduce their kind 
asexually, in numbers proportional to their fitnesses. The frequency 
pI of Hawks in the next generation is 

where 

pI = P W(H)/J,tT, 

W = P W(H)+ ( 1 -p) WeD). 
(2 .2) 
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Equation (2. 2) describes the dynamics of the population . Knowing 
the values of V and C, and the initial frequency of H, it would be a 
simple matter to calculate numerically how the population changes in 
time. It is more fruitful, however, to ask what are the stable states, if 
any, towards which the population will evolve. The stability criteria 
will first be derived for the general case, in which more than two 
strategies are possible, and then applied to the two-strategy Hawk
Dove game. 

If I is a stable strategy, * it must have the property that, if almost all 
members of the population adopt I, then the fitness of these typical 
members is greater than that of any possible mutant; otherwise, the 
mutant could invade the population, and I would not be stable. Thus 
consider a population consisting mainly of I, with a small frequency p 
of some mutant J. Then, as in (2. 1 ), 

WeI )  = Wo + ( 1 -p) E(I,I) + p E(/J), } 
W(J) = Wo + ( 1-p) E(J,I) +p E(J,J) .  

(2 .3) 

Since I is stable, W(I) > W(1) .  Si,nce 
J # I, 

either E(/,I) > E(J,! ) 

or E(I,I) = E(J,! ) and E(I,1 ) > E(J,J) .  

(2 . 4a) 

(2. 4b) 

These conditions were given by Maynard Smith & Price ( 1 973). 
Any strategy satisfying (2. 4 )  is an 'evolutionarily stable strategy', 

or ESS, as defined at the beginning of this chapter. Conditions (2. 4a, 
b) will be referred to as the 'standard conditions' for an ESS, but it  
should be clear that they apply only to the particular model just 
described, with an infinite population, asexual inheritance and 
pairwise contests. 

We now use these conditions to find the ESS of the Hawk-Dove 
game. 

Clearly, D is not an ESS, because E(D,D) < E(H, D); a population 
of Doves can be invaded by a Hawk mutant. 

* The distinction between a stable strategy and a stable state of the population is 
discussed further on pp. 16-17 and Appendix D. 
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H is an ESS if !( V - C) > 0, or V >  C. I n  other words, if it is worth 
risking injury to obtain the resource, H is the only sensible strategy. 

But what if V < C? Neither H nor D is an ESS. We can proceed in 
two ways. We could ask: what would happen to a population of 
Hawks and Doves? I shall return to this question later in this chapter, 
but first I want to ask what will happen if an individual can play 
sometimes H and sometimes D. Thus let strategy I be defined as 'play 
H with probability P, and D with probability ( 1 - P)

,
; when an 

individual reproduces, it transmits to its offspring, not H or D, but the 
probability P of playing H. It does not matter whether each 
individual plays many games during its life, with probability P of 
playing H on each occasion, the payoffs from different games being 
additive, or whether each individual plays only one game, P then 
being the probability that individuals of a particular genotype play H. 

Such a strategy I, which chooses randomly from a set of possible 
actions, is called a 'mixed' strategy; this contrasts with a 'pure' 
strategy, such as Hawk, which contains no stochastic element. 

Is there a value of P such that I is an ESS? To answer this question, 
we make use of a theorem proved by Bishop & Cannings ( 1 978), 
which states: 
If I is a mixed ESS which includes, with non-zero probability, the 
pure strategies A,B,C, . . .  , then 

E(A,I) = E(B,I) = E(C,! ) . . .  = E(I,I) . 

The reason for this can be seen intuitively as follows. If 
E(A,I )  > E(B,I) then surely it would pay to adopt A more often and B 
less often .  If so, then I would not be an ESS. Hence, if I is an ESS, the 
expected payoffs to the various strategies composing I must be equal. 
A more precise formulation and proof of the theorem is given in 
Appendix C.  Its importance in the present context is that, if there is a 
value P which makes I an ESS of the Hawk-Dove game, we can find it 
by solving the equation 

E(H,I) = E(D,I), 

therefore 

P E(H,H) + ( 1 - P ) E(H,D) = PE(D,H ) + ( 1-P) E(D,D), 
(2.5) 
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therefore 

! ( V- C) P+ V( 1 - P) = !V( 1 - P), 

or P = VIC. 

More generally, for the matrix :  
J J 

J a b  
J e d, 

(2.6) 

there is a mixed ESS if a < c and d < b, the ESS being to adopt I with 
probability 

(b -d) 
(2. 7) 

If there is an ESS of the form I = PH + (1- P)D, then P is given by 
equation (2.6) . We still have to prove, however, that I satisfies 
equations (2.4b). Thus E(H,!) = E(D,! )  = E(I,!) , and therefore 
stability requires that E(/,D) > E(D,D) and E(/,H) > E(H,H). To 
check this :  

E( /,D) = PV + !( 1 - P) V > E(D,D). 

and E( l,H) = ! P( V  - C) > E(H,H), since V < C. 

Thus we have shown that, when V < C, a mixed strategy with 
P= VIC is evolutionarily stable. The first conclusion from our model, 
then, is that, in contests in which the cost of injury is high relative to 
the rewards of victory, we expect to find mixed strategies. The model 
is so oversimplified that the conclusion must be treated with reserve. 
Field data bearing on it are discussed in Chapters 6 and 7, after some 
possible complications have been analysed theoretically. 

The attainment of a mixed ESS depends on the assumption that a 
genotype can exist which specifies the mixed strategy and which can 
breed true. I now return to the question: what would happen to a 
population of pure Hawks and pure Doves? We have already seen 
that, if V < C, there can be no pure ESS. There may, however, be a 
stable genetic polymorphism; i .e .  there may be a mixture of 
pure-breeding Hawks and Doves which is genetically stable. 

Consider, then, a population consisting of H and D in frequencies p 
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and I-p. At equilibrium, the fitnesses W(H) and WeD )  must be 
equal . That is 

pE(H,H) + ( 1 -p)E(H,D) = pE(D,H) + ( 1 -p)E(D,D) .  (2.8) 

Equation (2.8) is identical to equation (2. 5), with p replacing P. 
Thus if P gives the frequency of H in a mixed ESS, and p the 
frequency of H in a population at genetic equilibrium, then p = P. 
This conclusion holds also if there are more than two pure strategies. 
But is the genetic polymorphism stable? When there are only two 
pure strategies, if the mixed strategy is stable then so is the genetic 
polymorphism; thus, for the Hawk-Dove game, a genetic polymor
phism with a frequency of p = VIC of pure Hawk is stable. 

Unhappily, if there are more than two pure strategies, this simple 
conclusion no longer holds. It is possible for a mixed ESS to be stable 
but the corresponding polymorphism to be unstable, and vice versa. 
The problem of stability is discussed further in Appendix D; it is 
mainly of mathematical interest, if only because the stability of a 
polymorphism in an asexual population is a problem different from 
that of the stability of a sexual diploid population (see Chapter 4, 
section A). 

I want now to extend the Hawk-Dove game by including more 
complex strategies. It will be convenient to replace the algebraic 
payoffs V and C by numerical ones; since only inequalities matter in 
determining qualitative outcomes, this makes things easier to follow 
without losing anything. Taking V = 2 and C = 4, there is a mixed ESS 
with P=! ; the payoff matrix is 

H D 

H -1 2 
D 0 1 .  

Suppose now that we introduce a third strategy, R or 'Retaliator'. 
R behaves lik� a Dove against another Dove, but, if its opponent 
escalates, R escalates also and acts like a Hawk. The payoff matrix is 
shown in Table 2a. 

This more general version of the Hawk-Dove game and, in 
particular, the stability of retaliation is treated in more detail-in 
Appendix E, which, I hope, corrects some of the errors I have made in 
earlier discussions of this problem. The game is discussed here to 
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Table 2. The Hawk-Dave-Retaliator game 

a b 

H D R H D R 

H - 1  2 -1 H -1 2 -1 
D 0 1 1 D 0 1 0.9 
R - 1  1 1 R -1  1. 1 1 

illustrate how games with more than two strategies can be analysed. 
The matrix in Table 2a is awkward to analyse because, in the absence 
of Hawk, D and R are identical. It is shown in Appendix E that the 
only ESS is the mixed strategy, I =tH + tD . 

The payoff matrix in Table 2b may be more realistic; it assumes 
that, in a contest between D and R; the -Retaliator does, at least 
occasionally, discover that its opponent is unwilling to escalate, and 
takes advantage of this, so that, in D v. R contests, R does a little 
better and D a little worse. It is easy to see that R is now an ESS, 
because E(R,R ) is greater than either E(D,R ) or E(H,R ) .  Hence 
neither D nor H, nor any mixture of the two, could invade an R 
population. In general, if any entry on the diagonal of a payoff matrix 
is greater than all other entries in the same column, then the 
corresponding pure strategy is an ESS. 

But is there any other ESS? In particular, what of I = tH + tD? 
Following the usual rules: 

E(H,! ) = - t + t02 = t, 

E(D,! ) = toO + t  = t, 

and hence E(I,! ) =t. Note that, as required of a mixed ESS, 
E(H,! ) = F;.(D,! ) . 

E(R,! ) = - t +  1 · 1  x t = 0.05. 

The matrix in Table 2b, then, has two ESS's, I = tH + tD and R .  A 
population could evolve to either, depending on its initial compo
sition. 
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(a) 
I 

(b) 
Figure 1 .  The Hawk-Dove-Retaliator game. (a) Representation 
of the state of a polymorphic population; h, d and r are the 
frequencies of pure H, D and R respectively. (b) Flows for the 
H-D-R game given in Table 2. There are attractors at I and R 
and a saddle point at S. 

D 

In picturing the dynamics of a game with three pure strategies, it is 
convenient to plot the state of the popUlation as a point in an 
eq uilateral triangle, and then to plot the trajectories followed by the 
population, as in Figure 1 .  Of course, such a diagram can only 
represent the frequencies of the three pure strategies in a polymorphic 
population. In this case, however, there is a correspondence between 
the stable states of the polymorphic population and the stable 
strategies when mixed strategies are possible. Thus there are two 
stable states: pure R, and a polymorphism with equal frequencies of 
H and D, the latter corresponding to the mixed ESS, I = tH + tD . 

A game with only two pure strategies always has at least one ESS 
(Appendix B); but if there are three or more pure strategies, there may 
be no ESS. Consider, for example, the matrix in Table 3 .  This 

Table 3. The 
Rock-Scissors-Paper game 

R S 

R -8 
S - 1 -8 
P 1 - 1  

P 
- 1  

1 
-8 
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describes the children's game, 'Rock-Scissors-Paper' (R-S-P ), with 
the proviso that a small payment s be made by both players to the 
bank if there is a draw. It also represents any game with three 
strategies, such that R beats S, S beats P and P beats R. It is easy to 
check that, for s positive, the mixed strategy I =-tR + -tS +-tP is an 
ESS. However, the genetically polymorphic population -tR,-tS,-tP is 
unstable; this is an example of a discrepancy between the stability 
criteria in the two cases . 

Suppose that s is small and negative; i .e .  there is a small positive 
payoff for a draw. In this case there is no ESS, pure or mixed. 
In the absence of an ESS, the population will cycle indefinitely, P-+S-+R-+P-+ . . . .  I cannot decide whether there are intraspecific 
contest situations likely to lead to such indefinite cycles; comparable 
cycles, in asymmetric games, are discussed on p. 1 30 and Appendix J .  

B A review o f  the assumptions 

An infinite random-mixing population 
If, as will commonly be the case, individuals do not move far from 
where they were born, this will alter the model in various ways. 

First, opponents will have some degree of genetic relatedness. An 
analysis of games between relatives is given in Appendix F. The 
problem turns out to be far from straightforward. At a qualitative 
level, however, the conclusion is the commonsense one, that animals 
will behave in a more Dove-like and less Hawk-like manner. 

Secondly, an individual may have a succession of contests against 
the same opponent .  If there is no learning from experience, this will 
not alter the conclusions. If there is learning, then the 'strategies' 
which have to be considered when seeking an ESS are no longer fixed 
behaviour patterns, but 'learning rules' ; the evolution of learning 
rules is discussed in Chapter 5. 

Thirdly, it is possible that the population whose evolution is being 
considered is not only finite but small .  If so, the basic model must be 
altered, because mutants cannot be very rare. Finite population 
games have been considered by Riley ( 1 978). 

Asexual reproduction 
Most species whose behaviour is of interest are sexual and diploid, 
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whereas the model outlined above assumes asexual reproduction. 
This discrepancy is unlikely to matter in practice. When reasoning 
about the function of some behavioural trait, some assumption must 
be made about the range of phenotypes possible to the species; i .e .  the 
'strategy set' . This may be based in part on knowledge of the range of 
actual variability in the species or in related species and in part on 
guesswork or common sense. It  is most unlikely to be based on a 
knowledge of the genetic basis of the behavioural variability. 
Therefore a simple assumption of 'like begets like' is often more 
sensible than a detailed assumption about the genetic basis .  A case 
where there seems no escape from detailed genetic hypotheses is 
discussed in Chapter 1 0, section D .  

It is, however, important to  be able to  show, for simple model 
situations, that the results of parthenogenesis and of diploid 
inheritance are similar. This is done for a particular case by Maynard 
Smith ( 1 98 1 ), and in Chapter 4 ,  section A. Briefly, an infinite 
random-mating diploid population plays a game with two pure 
strategies; P* represents the frequency of one strategy at the ESS (i .e. 
P* is given by equation 2.7). The actual frequency with which an 
individual adopts that strategy is determined by two alleles, A and a, 
being Po, PI and P2 in AA ,  Aa and aa, respectively . . 

If Po � PI � P2 (i .e. no overdominance), then the population will 
evolve to the ESS provided P* lies between Po and P2. If p* lies 
outside that range, then obviously the population cannot evolve to 
P*, but it will become fixed for the homozygote lying closest to the 
ESS. If there is overdominance, things are more complex, but it is still 
true that the population will usually evolve to an ESS if the genetic 
system permits, and otherwise approaches it as closely as it can . Eshel 
( 1 98 1 b) has shown that a diploid population will evolve to the ESS for 
a wide range of genetic structures, although it is not true for the most 
general ones. 

In general, as the number of loci, or number of alleles per locus, 
increases, it becomes more likely that a population will reach an ESS 
(Slatkin, 1 979) . If the ESS requires a range of phenotypes, achievable 
only by a genetic polymorphism and not by a mixed strategy, then the 
genetic system may prevent the phenotypes existing in the appro
priate frequencies. As an example, the ESS for the 'war of attrition' 
discussed in the next chapter requires a phenotypic distribution 
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which could not easily be generated by a polygenic system. Of course, 
no difficulty arises if an individual can adopt a mixed strategy. 

Symmetric and asymmetric contests 
The Hawk-Dove game analysed above is symmetrical .  That is to say, 
the two contestants start in identical situations: they have the same 
choice of strategies and the same prospective payoffs. There may be a 
difference in size or strength between them, which would influence the 
outcome of an escalated contest, but if so it is not known to the 
contestants and therefore cannot affect their choice of strategies. 

Most actual contests, however, are asymmetric. They may be 
between a male and a female, between an old and young, or a small 
and large individual, or between the owner of a resource and a 
non-owner. An asymmetry may be perceived beforehand by the 
contestants; if so, it can and usually will influence the choice of action. 
This is most obviously so if the asymmetry alters the payoffs, or 
affects the likely outcome of an escalated contest. It  is equally true, 
although less obvious, that an asymmetry which does not alter either 
payoffs or success in escalation can determine the choice of action. 

Table 4. The 
Hawk-Dove-Bourgeois game 

H 
D 
B 

H 

- 1  
o 

- 0.5  

D 

2 
1 
1.5 

B 

0. 5 
0.5 
1.0 

Thus, consider a contest between the owner of a territory and an 
intruder. In practice, the value of the territory may be greater to the 
owner because of learnt local knowledge, and it is also possible that 
ownership confers an advantage in an escalated contest. For 
simplicity, however, I shall ignore these effects. Let us introduce into 
the Hawk-Dove game a third strategy, B or 'Bourgeois'; i .e . 'if 
owner, play Hawk; if intruder, play Dove' .  The payoff matrix is 
shown in Table 4 . 

Note that it is always the case, when two B strategists meet, that 
one is the owner and the other intruder. I have assumed in filling in 
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the matrix that each strategy type is owner and intruder equally 
frequently. That is, genes determining behaviour are independent of 
the factors, genetic or environmental, determining ownership. 

It is clear that B is an ESS, and easy to check that it is the only ESS 
of this game� Thus an asymmetry of ownership will be used as a 
conventional one to settle the contest, even when ownership alters 
neither the payoffs nor success in fighting. The same is true of any 
other asymmetry, provided it is unambiguously perceived by both 
contestants. Asymmetric contests are discussed in detail in Chapters 
8-1 0. 

Pairwise contests 
The Hawk-Dove model, and more complex models expressed in 
payoff matrix form, suppose that an individual engages in one or 
more pairwise contests; if more than one contest occurs, payoffs are 
assumed to be combined additively. Such a model can be applied to 
agonistic encounters between pairs, or, in asymmetric form, to 
contests between mates or between parent and offspring. There are 
many situations, however, in which an individual is, in effect, 
competing not against an individual opponent but against the 
population as a whole, or some section of it. Such cases can loosely be 
described as 'playing the field' .  Examples include the evolution of the 
sex ratio (Fisher, 1 930; Shaw & Mohler, 1 953; Hamilton, 1 967), of 
dispersal (Fretwell, 1 972; Hamilton & May, 1 977), of competition 
between plants (since each plant competes against all its neighbours, 
not against a single opponent), and many other examples. In fact, 
such contests against the field are probably more widespread and 
important than pairwise contests; it therefore seems appropriate to 
discuss them under a separate head. 

C An extended model - playing the field 

We can extend the concept of an 'unbeatable strategy' (Hamilton, 
1 967) or an 'evolutionarily stable strategy', to cases in which the 
payoff to an individual adopting a particular strategy depends, not on 
the strategy adopted by one or a series of individual opponents, but 
on some average property of the population as a whole, or some 
section of it. 
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Table 5. Fitness matrix for the extended 
model 

Mutant / 
J 

Population 

/ 
W(/,I) 
W(J,I) 

J 
W(/,J) 
W(J,J) 

How should an ESS be defined when individuals are playing the 
field? This question has been treated by P .  Hammerstein (personal 
communication), and I have followed his proposal. Let the fitness of a 
single A strategist in a population of B strategists be written W(A,B ). 
Clearly, I will be an ESS if, for all J =/= I, W(J,!) < W(I'!). But what if 
W(J,!) = WeI,!)? We then need that- -W(J) < WeI) in a population of I 
strategists containing a small proportion q of J strategists . We define 
W(J,Pq,]'I) as the fitness of a J strategist in a population P consisting 
of qJ + ( 1 -q)I. The conditions for I to be an ESS then are, for all 
J=/= I, 

either W(J,!) < WeI,!) 

or W(J,!) = WeI,!) 

and, for small q, 

W(J,Pq,J,l) < W(I,Pq,J,l). 

(2.9) 

If only two strategies are possible, I and J, we can draw up the 
fitness matrix in Table 5 .  

If W(J,!) < WeI,!), then I i s  an ESS;  i f  W(I,J) < W(J,J), then J i s  
an ESS .  If neither of these inequalities hold, then the ESS is a mixture 
of I and J. It would be wrong though, to think that the proportions of 
the two strategies at the ESS are necessarily given by equation (2.7) . 
This would be true only if the fitness of an individual I in  a population 
consisting of a mixture I and J in proportion P to 1 - P were given by 
the linear sum PW(I,!) + ( 1 - P )W(I,J), and this is not necessarily so . 

These points can best be illustrated by considering the simplest 
form of the sex ratio game, in which a female can produce a total of N 
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Table 6. Fitness matrix for the sex ratio game 

Mutant S l  = 0. 1 
S2 = 0.6 

Population 

S l  = 0. 1 

1 .8 
5.8 

S 2  = 0.6 

0.967 
0.8 
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offspring, in the ratio s males to ( l -s) females. If we measure 'fitness' 
as expected number of grandchildren, then in a random-mating 
population of sex ratio Sf, we have , [ ( I - S')] 

W(s,s ) = N2 , 

and west,S') = 2N2( I - s'). (2. 1 0) 

If we then consider a population containing two types of female, 
producing sex ratios SI = 0. 1 and S2 = 0.6, we have the fitness matrix in 
Table 6. 

It is apparent that neither S I nor S2 is an ESS. If, without 
justification, we were to calculate P from equation (2.7), we would 
conclude, wrongly, that the stable state consisted of 1 /25 of SI and 
24/25 of S2, giving a population sex ratio of 1 4. 5/25 = 0 .58 .  In fact, the 
stable population sex ratio is 0 .5 .  

Supposing that only these two kinds of females existed, the correct 
way to find the ESS is as follows. Let s be the population sex ratio at 
equilibrium. 

Then W(SI ,S) = W(S2,S), or 

1 - 0. 1 + 0. 1 ( 1 - &)/& = 1 - 0 .6 +0.6( 1 - &)/&, 

or S = 0 .5 ,  
requiring 

0 .2s 1 + 0. 8s2. 

More generally, suppose individual females can produce any sex 
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ratio between 0 and 1 .  We seek a sex ratio s*, which is an ESS in the 
sense of being uninvadable by any mutant with s "#  s* . That is, 
W(s*, s*) > W(s ,s*) for s "#  s* . Provided that W is differentiable, we 
can find s* from the condition 

[o W(s,s*)/os]s = s. = o. (2. 1 1  ) 

Applying this condition to equation (2. 1 0) gives s* = 0.5, as 
expected. We can use equations (2.9) to check the stability of s* = 0.5 , 
as follows: 

Let S' = qs+ ( 1 - q)s* , where s "# s* . 

Then from equation (2. 1 0), 

W(s,s') = N2[ 
and 

W(s* ,s') = N2[ l - s* +s*
( 1  J. 

It is then easy to show that, for s "# s*, the inequality 
W(S,S /) < W(S* ,S /) holds. 

To summarise the extended model, a strategy I is an ESS provided 
that equations (2.9) are satisfied. If, in a game with two pure 
strategies, I and J, neither satisfies equations (2.9), the ESS will be a 
mixed strategy; however, the relative frequencies of I and J at the 
equilibrium cannot be found from equation (2 . 7), but must be 
calculated from the equation · WeI, Pop) = W(J, Pop), where Pop 
refers to the equilibrium population. If  the strategy set is a continuous 
variable (e.g. the sex ratio, varying continuously from 0 to 1 ), the ESS 
can be found from a condition similar to equation (2. 1 1 ); its stability 
must be checked by taking the second derivative, or in some other 
way. 

The crucial step !n analysing cases in which an individual is playing 
the field is to write down expressions corresponding to equation 
(2. 1 0), giving the fitness of a rare mutant in a population of known 
composition. In the particular case of equation (2. 1 0), the population 

An extended model 27 

is treated as infinite and without structure. This, however, is not a 
necessary restriction. For example, Hamilton ( 1 967) sought the 
unbeatable sex ratio, s*, when the offspring of k females mate 
randomly inter se. The problem reduces to writing down an 
expression W(s,s*) for the fitness of an individual producing sex ratio 
s when in a group with k - 1 females producing a sex ratio s*, and 
then applying condition (2. 1 1 ). In other words, given that the other 
females in the group produce the sex ratio s*, the best thing for the kth 
female is to do likewise. 

To give another example of a structured population, consider 
competition between plants or sessile animals growing in a pure 
stand. We would seek a growth strategy I such that, if all the 
neighbours of an individual were adopting I, the best strategy for the 
individual is also 1. Mirmirani & Oster ( 1 978) considered competition 
between annual plants which differed in the time at which they 
switched resources from growth to seed production. To find the 
evolutionarily stable time, T*, it would be necessary to find W(T,T*), 
the seed production of an individual switching at time T if 
surrounded by individuals switching at time T*, and then to solve the 
equation [o W(T, T*)/o1]* = 0. Note that it would not be necessary to 
work out the fitness of individuals surrounded by a mixture of types. 

As a summary of the ideas in this chapter, it might be helpful to 
read through the 'Explanation of main terms' on p. 204. 


