Finite-Difference
Equations

1.1 A MYTHICAL FIELD

Imagine that a graduate student goes to a meadow on the first day of May,
walks through the meadow waving a fly net, and counts the number of flies
caught in the net. She repeats this ritual for several years, following up on the
work of previous graduate students. The resulting measurements might look like
the graph shown in Figure 1.1. The graduate student notes the variability in her
measurements and wants to find out if they contain any important biological
information.

Several different approaches could be taken to study the data. The student
could do statistical analyses of the data to calculate the mean value or to detect
jong-term trends. She could also try to develop a detailed and realistic model of
the ecosystern, taking into account such factors as weather, predators, and the
fly populations in previous years. Or she could construct a simplified theoretical
model for fly population density.

Sticking to what she knows, the student decides to model the population
variability in terms of actual measurements. The number of flies in one summer
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Figure1.1 The number of flies caught during the annual fly survey.

depends on the number of eggs laid the previous year. The number of eggs laid
depends on the number of flies alive during that summer. Thus, the number of
flies in one summer depends on the number of flies in the previous summer. In
mathematical terms, this is a relationship, or function,

Nip1 = f(Ny). 1.1

This equation says simply that the number of flies in the t + 1 summer is de-
termined by (or is a function of ) the number of flies in summer ¢, which is the
previous summer. Equations of this form, which relate values at discrete times
(e.g., each May), are called finite-difference equations. N, is called the state of the
system at time 7. We are interested in how the state changes in time: the dynamics
of the system.

Since the real-world ecosystem is complicated and since the measurements
are imperfect, we do not expect a model like Eq. 1.1 to be able to duplicate
exactly the actual fly population measurements. For example, birds eat flies, so
the population of flies is influenced by the bird population, which itself depends
on a complicated array of factors. The assumption behind Eq. 1.1 is that the
number of flies in year ¢ + 1 depends solely on the number of flies in year . While
this is not strictly true, it may serve as a working approximation. The problem now
is to figure out an appropriate form for this dependence that is consistent with
the data and that encapsulates the important aspects of fly population biology.

1.2 THE LINEAR FINITE-DIFFERENCE EQUATION

Let us start by making a simple assumption about the propagation of
flies: For each fly in generation ¢ there will be R flies in generation ¢ + 1. The
corresponding finite-difference equation is

N1 = RN,. (1.2)
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Equation 1.2 is called a linear equation because a graph of N, versus N;
is a straight line, with a slope of R.

The solution to Eq. 1.2 is a sequence of states, Ny, N2, Ns, . . ., that satisfy
Eq. 1.2 for each value of 7. That is, the solution satisfies N = RN;,and N3 =
RN, and Ny = RN;3, and so on.

One way to find a solution to the equation is by the process of iteration.
Given the number of flies Ny in the initial generation, we can calculate the number
of flies in the next generation, Ni. Then, having calculated N}, we can apply Eq. 1.2
to find N,. We can repeat the process for as long as we care to, The state Ny is
called the initial condition.

For the linear equation, it is possible to carry out the iteration process using
simple algebra. By iterating Eq. 1.2 we can find N;, N;, N3, and so forth.

Ny = RN,
N, = RN; = R’N,,
N3 = RN, = R*N; = R*N,,

There is a simple pattern here: It suggests that the solution to the equation might
be written as

N; = R'Nq. (1.3)

We can verify that Eq. 1.3 is indeed the solution to Eq. 1.2 by substitution.
Since Eq. 1.3 is valid for all values of time ¢, it is also valid for time ¢t + 1. By
replacing the variable ¢ in Eq. 1.3 with ¢ + 1, we can see that N,y; = R'*!N,.
Expanding this, we get

Niy1 = RNy = RR'Ny = RN,,

which shows that the solution implies the finite-difference equation in Eq. 1.2.

BEHAVIOR OF THE LINEAR EQUATION

Equation 1.3 can produce several different types of solution, depending on
the value of the parameter R:

Decay When 0 < R < 1, the number of flies in each generation is
smaller than that in the previous generation. Eventually, the number falls
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to zero and the flies become extinct (see Figure 1.2). Since the solution is
an exponential function of time (see Appendix A), this behavior is called
exponential decay.

Growth When R > 1, the population of flies increases from generation
to generation without bound. The solution is said to “explode” to co (see
Figure 1.3). Again the solution is an exponential function, and this behavior
is thus called exponential growth.

Steady-state behavior When R is exactly 1, the population stays at the
same level (see Figure 1.4). This is clearly an extraordinary solution, because
it only happens for a single, exact value of R, whereas the other types of
solutions occur for a range of R values.

The behaviors in the fly population study involve R > 0. It doesn’t make
biological sense to consider cases where R < 0in Eq. 1.2. After all, how can flies
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lay negative eggs? Later, in Section 1.5, we shall see cases where it makes sense to
talk about R < 0. Such cases produce different types of behavior:

Alternating decay When —1 < R < 0, the solution to Eq. 1.2 alter-
nates between positive and negative values. At the same time, the amplitude
of the solution decays to zero in the same exponential fashion seen for
0 < R < 1 (see Figure 1.5).

Alternatinggrowth When R < —1,thesolution still alternates between
positive and negative values. However, the amplitude of the solution grows
exponentially and explodes to 00 (see Figure 1.6).

Periodic cycle When R is exactly —1, the solution alternates between
Ny and — N, and neither grows nor decays in amplitude. A periodic cycle
occurs when the solution repeats itself. In this case, the solution repeats
every two time steps, . . . , Ng, —Ng, Ny, —Nj, . . ., and so the duration of
the period is two time steps (see Figure 1.7).
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1.3  METHODS OF ITERATION

We have seen how the solution to Eq. 1.2 could be found using algebra.
Later we will encounter finite-difference equations in which an algebraic solution
cannot be found. Here, we introduce two other methods for iterating finite-
difference equations, the cobweb method and the method of numerical iteration.

THE COBWEB METHOD

The cobweb method is a graphical method for iterating a finite-difference
equation like Eq. 1.1. No algebra is required in order to perform the iteration;
one only needs to graph the function f(N;) on a piece of paper.

To illustrate the cobweb method, we will start with the linear system of
Eq. 1.2. To perform the iteration using the cobweb method, we do the following:

1. Graph the function. In this case, f(¥;) = RN,. In order to make a
plot of the function RN;, we need to pick a specific value for R. (Note
that the algebraic method for finding solutions did not require this.) As
an example, we will set R = 1.9 so that the finite-difference equation
is Niy1 = 1.9N,. The resulting function is shown by the dark line in

Figure 1.8.
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2. Pick a numerical value for the initial condition. In this case, as an ex-
ample, we will select Ny = 0.7, shown as the gray dot on the x-axis in
Figure 1.8. (In the algebraic method, we did not need to select a specific
numerical value. Instead we were able to use the symbol N, to stand for
any initial condition.)

3. Draw a vertical line from N; on the x-axis up to the function. The
position where this vertical line hits the function (shown as a solid dot
at the end of the arrow) tells us the value of N;.

4. Take this value of Ny, plot it again on the x -axis, and again draw a vertical
line to find the value of N,. There is a simple shortcut in order to avoid
plotting N; on the x-axis: Draw a horizontal line to the N,; = N, line
(shown in gray—it’s the 45-degree line on the plot). The place where
the horizontal line intersects the 45-degree line is the point from which
to draw the next vertical line to find N-.

5. Inorder to find N3, Ny, and so on, repeat the process of drawing vertical
lines to the function and horizontal lines to the line of Ny, = N,.

As Figure 1.8 shows, the result of iterating N,; = 1.9N; is growth toward
00. This is consistent with the algebraic solution we found in Eq. 1.3 for R > 1.

NUMERICAL ITERATION

Since the cobweb method is a graphical method, it may not be very precise.
In order to acheive more precision, we can use numerical iteration. This is a
simple procedure, easily implemented on a computer or even a hand calculator.
To illustrate, suppose we want to find a numerical solution to N,y; = RN, with
R = 0.9 and Ny = 100.

N, = 100,
Ny = f(No) = 0.9 x 100 = 90,

Ny = f(Ny) = 0.9 x 90 = 81, (1.4)
N; = f(Ny) = 0.9 x 81 = 72.9,

When applied to the linear finite-difference equation in Eq. 1.2, the cobweb
method and the method of numerical iteration merely allow us to confirm the
existence of the types of behavior we found algebraically. Since the cobweb and
numerical iteration methods require that specific numerical values be specified for
the parameter R and the initial condition Ny, it might seem that they are inferior to
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the algebraic method. However, when we consider nonlinear equations, algebraic
methods are often impossible and numerical iteration and the cobweb method
may provide the only means to find solutions.

1.4 NONLINEAR FINITE-DIFFERENCE EQUATIONS

The measurements of the fly population shown in Figure 1.1 don’t suggest
explosion or extinction, nor do they remain steady. This suggests that the model
of Eq. 1.2 is not good. It does not take much of an ecologist to see where a mistake
was made in formulating Eq. 1.2. Although it is all right to have rapid growth in
populations for low densities, when the fly population is high, competition for
food limits growth and starvation may cause a decrease in fertility. The larger
population may also increase predation, as predators focus their attention on an
abundant food supply.

A simple way to modify the model is to add a new term that lowers the
number of surviving offspring when the population islarge. In thelinear equation,
R was the number of offspring of each fly in generation ¢. In order to make the
number of offspring per fly decrease as N; gets larger, we can make the growth
rate a function of N;. For simplicity, we will chose the function (R — bN,). The
positive number b governs how the growth rate decreases as the population gets
bigger. R is the growth rate when the population is very, very small.

This assumption that the number of offspring per fly is (R — bN,) gives us
a new finite-difference equation,

N1 = (R — bN,)N, = RN, — bN?2. (1.5)

Equation 1.5 is a nonlinear equation since the rightmost side is not the equation
of a straight line. Nonlinear equations arise commonly in mathematical models
of biological systems, and the study of such equations is the focus of this book.
In Eq. 1.5 there are two parameters, R and b, that can vary independently.
However, a simple change of variables shows that there is only one parameter that
affects the dynamics. We define a new variable x; = % , which is just a way of
scaling the number of flies by the number % . Substituting x; and x;; in Eq. 1.5,

we find the equation
Xq1 = Rx(1 - x;). (1.6)

Although Eq. 1.6 (called the quadratic map) may not seem much more
complicated than Eq. 1.2, the solution cannot generally be found using algebra.
Numerical iteration and the cobweb method, however, can be used to find so-
lutions. In order to apply the cobweb method to Eq. 1.6, we first must draw a
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Figure 1.9
Cobweb iteration of
K X1 = 1.5(1 — x,)x;.

graph of the function. (Anyone who has not practiced calculus recently may find
sketching the graph of an equation intimidating. If you are in this category, go
over the material in Appendix A and pay particular attention to the section on
quadratic functions since this is what we have here.) In this case, the graph is a
parabola, with intercepts at x, = 0 and x, = 1, as Figure 1.9 shows.

Next, we need to pick specific values for the parameter R in Eq. 1.6. Since
we don’t yet know what the behavior of this equation will be, we will have to study
a range of parameter values. Doing so reveals a number of different behaviors:

Steady state The nonlinear equation can have a solution that ap-
proaches a certain state and remains fixed there. This is shown in
Figure 1.10 for R = 1.5, where the solution creeps up on the steady state
from one side; this is called a monotonic approach.

As shown for R = 2.9 in Figure 1.11, the approach to a steady state can
also alternate from one side to the other.

o Figure 1.10
t The solution to
5 10 15 20 X1 = L5 — x.)x;.
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Periodic cycles The solution to the nonlinear equation can have cycles.
This is shown for R = 3.3 in Figures 1.12 and 1.13, where the cycle has
duration 2. When carrying out the cobweb iteration, a cycle of period two
looks like a square that is repeatedly traced out (see Figure 1.12). The cycle
in this case follows the sequence x, = 0.48, x;4; = 0.82, x;4; = 0.48,and
so on.

For R = b = 3.52 (see Figure 1.14), the cycle has duration 4 and
follows the sequence x; = 0.88, x;4; = 0.37, x;4» = 0.82, x,43 = 0.51,
X4 = 0.88, and so forth.
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Figure 1.15
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Aperiodic behavior The solution to the nonlinear equation may oscil-
late, but not in a periodic manner. Setting R = 4, we find the behavior
shown in Figures 1.15 and 1.16-—a kind of irregular oscillation that is nei-
ther exponential growth or decay, nor a steady state. The cobweb iteration
shows how the irregular iteration arises from the shape of the function (see
Figure 1.15). This behavior is called chaos, and we will investigate it in

greater detail in later sections in the book.
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1.5 STEADY STATES AND THEIR STABILITY

A simple, but important, type of dynamical behavior is when the system
stays at a steady state. A steady state is a state of the system that remains fixed,
that is, where

Xep1 = Xt-

Steady states in finite-difference equations are associated with the math-
ematical concept of a fixed point. A fixed point of a function f(x,) is a value
x; that satisfies x} = f(x}). Later on, we shall see how fixed points can also be
associated with periodic cycles.

There are three important questions to ask about fixed points in a finite-
difference equation:

« Are there any fixed points—in other words, are there any values of x;
that satisfy x; = f(x;)?

« If the initial condition happens to be near a fixed point, will the subse-
quent iterates approach the fixed point? If subsequent iterates approach
the fixed point, we say the fixed point is locally stable. (Mathematicians
call this “locally asymptotic stability.”)

» Will the system approach a given fixed point regardless of the initial
condition? If the fixed point is approached for all initial conditions, we
say that the fixed point is globally stable.

FINDING FIXED POINTS

From the graph of x,,; = f(x;) it is easy to locate fixed points: They are
simply those points where the graph intersects the line x;;; = x;. Or, we can use
algebra to solve the equation x; = f(x;).

For the linear finite-difference equation, x} is a fixed point if it satisfies the
equation x; = Rx}. One solution to this equation is always x;' = 0. This means
that the origin is a fixed point for a linear system. This has an obvious biological
interpretation: If there are no flies in one year, there can’t be any the next year
(unless, of course, they migrate from distant parts or evolve again, both of which
are beyond the scope of our simple model).

The solution x, = 0 is the only fixed point, unless R = 1. If R is exactly
1, then all points are fixed points. Clearly, this is an exceptional case, because any
change in R, no matter how small, will eliminate all of the fixed points except the
one at the origin.

Nonlinear finite-difference equations can have more than one fixed point.
Figures 1.17 and 1.18 show the location of the fixed points for Eq. 1.6 for R = 2.9
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and R = 3.52, respectively. For the quadratic map of Eq. 1.6, the fixed points
can also be found using algebra from the roots of the quadratic equation

x = Rx;(1 —x;) or, x,2(R—Rx; —1)=0.

The roots of this equation are

R—1
x, =0 and x,z—R—.
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Again, in our model the biological meaning of the root x, = 0 is that flies
don’t appear from nowhere. The biological interpretation of the fixed point at
X = 5;—1 is that this is a self-sustaining level of the population, with neither a
decrease nor an increase.

Clearly, itis impossible for the fly population to be at both these fixed points
at the same time. So now we have to address the question of which of these fixed
points will be reached by iterating from the initial condition, if indeed either of

them will be.

LOCAL STABILITY OF FIXED POINTS

Figures 1.17 and 1.18 both have two fixed points, but in Figure 1.17 the
iterates approach the nonzero fixed point while in Figure 1.18 the iterates do not.
The difference between these cases is the local stability of the fixed points.

We say that a fixed point is locally stable if, given an initial condition
sufficiently close to the fixed point, subsequent iterates eventually approach the
fixed point.

How do we tell if a fixed point is locally stable? For a linear finite-difference
equation, x.4; = Rx;, we already know the answer: The stability of the fixed
point at the origin depends on the slope R of the line. If |[R| < 1, future iterates
are successively closer to the fixed point at the origin—this is exponential decay
to zero. If |R| > 1, future iterates are successively farther away from the fixed
point at the origin.

How does one determine the stability of a fixed point in a nonlinear finite-
difference equation? In calculus classes, one discusses the notion that over limited
regions a curve can be approximated by a straight line of the appropriate slope.
In the neighborhood of the intersection of the straight line x,; = x, with the
curve x,; = f(x;), itis therefore possible to approximate the curve by a straight
line.

Figures 1.19 through 1.22 illustrate four separate cases that show the region
of intersection. Let x* be a fixed point of f(-), thatis a state for whichx* = f(x*).
The slope of the curve at the fixed point, a‘% L establishes the stability of the
fixed point. We will designate this slope by m. Figures 1.19 through 1.22 plot y;4,
versus ¥, where y; = x; — x*. This means that in the figures the fixed point
appears at the origin, whereas in the original variable, x;, the fixed point is at x*.
Observe that

« If|m| < 1, the fixed point is stable so that nearby points approach the
fixed point under iteration.

» If|m| > 1,thefixed pointis unstable and points leave the neighborhood
of the fixed point.

Also, note that
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Y1

Figure 1.21

The dynamics of y,41 = my;.
—1 < m < 0 produces
alternating decay as shown here
withm = —0.5.

« Ifm > 0, the points approach or leave the fixed point in a monotonic
fashion.

» Ifm < 0, the points approach or leave the fixed point in an oscillatory
fashion.

Fromthe above considerations, a general method can be given for determin-
ing the stability of a fixed point in finite-difference equations with one variable.
The steps are as follows:

1. Solve for the fixed points. This involves solving the equation

x = fx).
4
: Yen
2 2 -
o
z’/
-~ @’ i
1o g AT 1 w2
- /,w’ < t
e e
- -9 Figure 1.22
The dynamics of y.41 = my;.
m < —1 produces alternating
growth. Here,m = —1.9.
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Linear equations always have only one fixed point-—the one at x;, = 0.
Nonlinear equations may have more than one fixed point. Steps 2 and
3 can be applied to each of the fixed points, one at a time. Call the fixed
point we are studying x*. Like all fixed points, this satisfies x* = f(x*).

2. Calculate the slope m of f(x,), evaluating x, at the fixed point x*. That
is, compute

3. The slope m at the fixed point determines its stability.
1 < m Unstable, exponential growth.
0 <m < 1 Stable, monotonic approach to y; = 0 (i.e., approach to

X = x*).
—1 < m < 0 Stable, oscillatory approach to y, = 0 (i.e., approach to
X = x*).

m < —1 Unstable, oscillatory exponential growth.

TRANSIENT AND ASYMPTOTIC BEHAVIOR

If a fixed point is locally stable, then once the state is very near to the fixed
point, it will stay near throughout the future. Before the state reaches the fixed
point, it may show different behavior. For example, in Figure 1.10, the state is far
enough away from the fixed point for the first five or six iterations that we can see
it change from iteration to iteration. After that, the state appears to have reached
the fixed point. In Figure 1.11, the movement toward the fixed point is visible
for approximately twenty iterations. The term asymptotic dynamics refers to the
dynamics as time goes to infinity. Behavior before the asymptotic dynamics is
called transient.

STABILITY AND NUMERICAL ITERATION

Suppose that we want to use numerical iteration to find fixed points. One
strategy would be to pick a large number of initial conditions and iterate numer-
ically each of these initial conditions. If the iterates converge to a fixed value; then
we have identified a fixed point at that value. (Figure 1.10 shows an example of
this.)

If a fixed point is locally stable, then this strategy may well succeed, since
the fixed point will eventually be approached if any of the initial conditions is
close to the fixed point. Once the state is close to the fixed point, it will remain
near the fixed point.

17
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If a fixed point is unstable, however, then we will find it only if one of the
iterates happens to land on the fixed point exactly, and this is extremely unlikely.
In general, we can use numerical iteration only to find stable fixed points. If we
want to find unstable fixed points, another approach is needed, namely solving
the equation x; = f(x;). :

(1 Exampie 1.1

Cells reproduce by division; the process by which the cell nucleus divides is
called mitosis. One way to regulate the rate of reproduction of cells is by regulating
mitosis. There is (controversial!) biochemical evidence that there are compounds,
called chalones, that are tissue-specific inhibitors of mitosis (see Bullough and
Laurence, 1968).

For simplicity, assume that the generations of cells are distinct and that the
number of cells in each generation is given by N;. Following the same logic as in
Eq. 1.2, assume that for each cell in generation ¢, there are R cells in generation
t+ 1. (Ifevery cell divided in halfevery time step, then R would equal 2.) The finite-
difference equation describing this situation is the linear equation N;+1 = RN,
which leads either to exponential growth or to decay to zero.

A possible role of chalones is to make R depend on the number of cells.
Assume that the amount of chalone produced is proportional to the number of
cells. The more chalone there is, the greater the inhibitory effect on mitosis.

The biochemical action of chalones is to bind to a protein involved in
mitosis, rendering the protein inactive. Binding of molecules to proteins is often
modeled by a Hill function (see Section A.5), which suggests that an appropriate
equation for the hypothetical chalone control mechanism is

RN,
Niyi = f(N)) = -

1+ (%)

where 8 and n are parameters. We will assume that n > 2. Figure 1.23 shows this
finite difference equation when R = 2,0 = 5,andn = 3.
Find the fixed points of this system and determine their stability.

1. To determine the fixed points we solve the equation

RN*
N* - -—I—V—:—? .
1+ (%)
There are two real solutions: N* = 0and N* = 6(R - 1) * . These
are the only fixed points. There are also imaginary solutions that can
be ignored in this case because we are only concerned with biologically
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Figure 1.23 A cobweb analysis of chalone production for the parameters R = 2,
6 =5n=3.

meaningful solutions, and the number of cells in each generation must
be a real number.

2. To determine the stability of the fixed points it is necessary to compute
the slope at the fixed points. Differentiating the right-hand side of the
finite-difference equation, we find

daf _ R+R(F)'a-n
N )

3. From the above equation we find that the slope at the fixed point x, = 0
isjust R.If R > 1, the fixed point at the origin is always unstable. (To be
a plausible model of the regulation of cell reproduction, we must have
R > 1. Otherwise, the population would always fall to zero even in the
complete absence of the mitosis-inhibiting chalones.)
The slope at the fixed point N* = 8(R — 1) " s

1
=1+n(——l).
N R

af
dN,
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For R = 2, the fixed point will be unstable when n > 4 and stable
otherwise. O

GLOBAL STABILITY OF FIXED POINTS

In this section we’ve studied local stability. Local stability tells us whether
the fixed point is approached if the initial condition is sufficiently close to the
fixed point. The local stability can be assessed simply by looking at the slope of
the function at the fixed point.

A slightly different—and often much more difficult—question is whether
a locally stable fixed point is globally stable.

For linear finite-difference equations, the answer is straightforward. A lo-
cally stable fixed point is also globally stable: Regardless of the initial condition,
the iterates will eventually reach the locally stable point (i.e., the origin) from any
initial condition.

For nonlinear finite-difference equations, there can be more than one fixed
point. When multiple fixed points are present, none of the fixed points can be
globally stable.

The set of initial conditions that eventually leads to a fixed point is called
the basin of attraction of the fixed point. Often, the basin of attraction for fixed
points in nonlinear systems can have a very complicated geometry (see Chapter 3).
If multiple fixed are locally stable we say there is multistability.

1.6 CYCLES AND THEIR STABILITY

In Figures 1.7, 1.13, and 1.14 we can see that periodic cycles are one form of
behavior for finite-difference equations. In everyday language, a cycle is a pattern
that repeats itself, and the period of the cycle is the length of time between
repetitions. In finite-difference equations like Eq. 1.1, a cycle arises when

Xign = Xty but xt_;..j # Xt forj - l, 2, Y (e ].. (1.7)

There is a useful correspondence between fixed points and periodic cycles
which helps in understanding how to find cycles and assess their stability. A simple
case is a cycle of period 2. Consider the finite-difference equation

X1 = f(x) = 3.3(1 = x)x,. (L.3)
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As shown in Figure 1.13, the solution is a cycle of period 2. The definition of a
cycle of period 2 is that

Xee2 = X; while x;1) # x;. (1.9)
By substitution into x,+; = f(x;), we can write the value of x,, as

X4z = f(xen) = F(f (). (1.10)

Ifthereisacycleof period 2, thenx; = f(f(x;)). Forthe quadratic map (Eq. 1.6),
we can find f(f (x;)) with a bit of algebra:

f(f(xt)) = f(xt+1) = RX;.H - Rx'2+1
= R(Rx; — Rx?) — R(Rx, — Rx?)? (1.11)
= R’ — (R + R%)x? + 2R*x} — Rx}.

The equation may seem a little formidable, but the M-shaped graph, shown in
the lower graph in Figure 1.24, is quite simple.

We can see from Eq. 1.10 that there is an analogy between fixed points
and cycles: If a system x,; = f(x;) has a cycle of period 2, then the function
F(f(x;)) has at least two fixed points. Thus, we can find the cycles of period 2 by
solving the equation x; = f(f(x;)). This can be done graphically, algebraically,
or numerically.

One trivial type of solution to x, = f(f(x;)) isa solution to x, = f(x,).
These solutions correspond to the fixed points of f(x;) and hence are not cycles
of period 2—they are “cycles of period 1,” that is, steady states. In the graph of
Eq. 1.11 shown in Figure 1.24, we can see four fixed points of f(f(x;)):atx, = 0,
at x, = 0.479, at x, = 0.697, and at x;, = 0.823. Two of these values are also
fixed points of f(x,) and therefore correspond to cycles of period 1.

Longer cycles can be found in the same way. A cycle of period » is found
by solving the equation

x = f(fC-- fx),
R ——
n times
avoiding solutions that correspond to periods less than n. In practice, this problem

can be very hard to solve algebraically.

STABILITY OF CYCLES

Just as a fixed point can be locally stable or unstable, a cycle can be stable or
unstable. We say that a cycle is locally stable if, given that the initial condition is
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Figure 1.24 A cycle of period 2 in the system x,4.1 = R(1 — x,)x, = f(x;) for
R = 3.3, The graph of x,., versus x; has two fixed points, marked as gray dots,
but neither of them is stable. When plotted as x,., versus x,, the cycle of period
two looks like 2 fixed points in the finite-difference equation x;42 = f(f{x:)).
Altogether, this system has four fixed points—the two corresponding to the cycle of
period 2 (marked as small gray squares) and the two fixed points from the system

Xepr = fx0).
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close to a point on the cycle, subsequent iterates approach the cycle. (Again, this
is what mathematicans call “local asymptotic stability”).

‘We can now consider the computation of the stability of the fixed point of the
finite-difference equation x,., = f(f(x;)). We will use x* to denote a solution to
theequationx, = f(f(x;)) thatisnotalsoafixed pointofx, = f(x;). Referring
to Section 1.5, we can see that the stability of the fixed pointof x5 = f(f (%))
depends on the value of

af(f(x))
dx,

Using the chain rule for derivatives, we have

df (f(x:))
dx,

- 4

T odx,

df
feeny %

x* x* '
Thus, the stability of a fixed point of period 2 depends on the slope of the function
f(x) at both of the two points x* and f(x*).

A method for finding cycles by numerical iteration is quite easy in principle:
Start at some initial condition and at each iteration, see if the value has been
produced previously. Once the same value is encountered twice, the intervening
values will cycle over and over again.

When cycles are found by numerical iteration, it is important to realize that
unstable cycles will tend not to be found. This is exactly analogous to the situation
when using numerical iteration to look for fixed points. When a cycle is stable,
any initial condition in the cycle’s basin of attraction will eventually lead to the
cycle. For unstable cycles, the cycle will not be approached unless some iterate of
the initial condition lands exactly on a point on the cycle.

[ Exampie 1.2

Consider the finite-difference equation

Xt =

a. Sketch x;,; as a function of x,.
b. Determine the fixed point(s), if any, and test algebraically for stability.

c. Algebraically determine x4, as a function of x, and determine if there
are any cycles of period 2. If so, are they stable? Based on the analysis
above, determine the dynamics starting from any initial condition.
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Xt
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—4 Figure 1.25

The graph of x,4; = —3—’;'7’;‘; .

Solution:

a. This is the graph of a hyperbola, see Figure 1.25. There are no local

maxima or minima, but there are asymptotesatx, = — % andatx,,; =

. The fixed points are determined by setting x,4; = x; to give the

quadratic equation
3x2 +2x, — 1 =0.

This equation can be factored to yield two solutions, x, = % and x; =
—1. To determine stability, we compute

dxiy1 —4
dx,  Gx + 1?2

When this is evaluated at the fixed points, the slope is —1. Note that
a slope of —1 does not fall into the classification scheme presented in
Section 1.5—if the slope were slightly steeper than —1, the fixed point
would be unstable; if the slope were slightly less steep than —1, the
fixed point would be stable. We cannot determine the stability of the
steady states from this computation: The steady state is neither stable
nor unstable.

¢. Iterating directly we find that

1 — x4

X ID e———
2 3xp4y + 1
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1-x
_ 1_(327:1)
= -
3(3)7,-?-1) +1

= Xi.

Amazingly, all initial conditions are on a cycle of period 2. The cycles
are neither locally stable nor unstable, since initial conditions neither
approach nor diverge from any given cycle. O

The preceding discussion shows that if there are stable cycles, then an exam-
ination of the graph of x,., as a function of x, will show certain definite features.
If there is a stable cycle of period n, there must be at least n fixed points associated
with the stable cycle, where the slope at each of the fixed points is equal and the
absolute value of the slope at each of the fixed points is less than 1.

Now let’s consider a specific situation, the quadratic map

Xep1 = f(x) = 41 — x)x,. (1.12)

This now-familiar parabola is plotted again in Figure 1.26. We can see that
there are two fixed points, both of which are unstable because the slope of the
function at these fixed points is steeper than 1.

To look for cycles of period 2, we can plot x.y, versus x, as shown in
Figure 1.27. The four places where this graph intersects the line x,;, = x, (i.e,
the 45-degree line) are the possible points on the cycle of period 2—recall that
two of the intersection points correspond to cycles of period 1. Since the slope of

X1
0.8
06
04
0.2
02 04 06 08 x,1 le:g_:lf:zrls.::x, for Eq. 1.12.
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Xt49
0.8
0.6
04
02
02 04 06 08 X; 1 ::f:l z:rls.:z x; for Eq. 1.12.

the function at all these points is steeper than 1, we can conclude that there are
no stable cycles of period 2 in Eq. 1.12.

We can continue looking for longer cycles. Figure 1.28 shows the graph of
Xi03 = F(f(f(x))). This graph intersects the line x,43 = x; in eight places. (Of
these, two correspond to cycles of period 1.) At all of these places the slope of the
function is steeper than 1, so all of the possible cycles of period 3 are unstable.
Similarly, Figure 1.29 shows that the cycles of period four are also unstable.

In fact, there are no stable cycles of any length, no matter how long, in
Eq. 1.12, although we will not prove this here. What are the dynamics in Eq. 1.122
The next section will explore the answer to this question.

X3 ] m n/

08
0.6

0.4

02

Figure 1.28

02 04 06 08 x 1 X3 versus x, for Eq. 1.12.
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1 Figure 1.29
X;.44 versus x, for Eq. 1.12.

1.7 CHAOS

DEFINITION OF CHAOS

Let’s do a numerical experiment to investigate the properties of Eq. 1.12,
Pick an initial condition, say xo = 0.523423, and iterate. Now start over, but
change the initial condition by just a little bit, to xo = 0.523424. The results are
shown in Figure 1.29.

There are several important features of the dynamics illustrated in Fig-
ure 1.29. In fact, based on the figure we have strong evidence that this equation
displays chaos—which is defined to be aperiodic bounded dynamics in a
deterministic systemn with sensitive dependence on initial conditions.

Each of these terms has a specific meaning, We define the terms and explain
why each of these properties appears to be satisfied by the dynamics in Figure 1.29.

Aperiodic means that the same state is never repeated twice. Examina-
tion of the numerical values used in this graph shows this to be the case.
However, in practice, by either graphically iterating or using a computer
with finite precision, we eventually may return to the same value. Although
a computer simulation or graphical iteration always leaves some doubt
about whether behavior is periodic, the presence of very long cycles or of
aperiodic dynamics in computer simulations is partial evidence for chaos.

Bounded means that on successive iterations the state stays in a finite
range and does not approach =c0. In the present case, as long as the initial
condition x, is in the range 0 < x; < 1, then all future iterates will also
fall in this range. This is because for 0 < x, < 1, the minimum value
of 4(1 — x,)x; is 0 and the maximum value is 1. Recall that in the linear

7
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Figure1.30 Two solutions to x,.; = (4 — 4x,)x,. The solution marked with a dot
has the initial condition x; = 0.523423, while the solution marked with a circle
has xg = 0.523424. The solutions are almost exactly the same for the first seven
iterations, and then move apart.

finite-difference equation, Eq. 1.2, we have already seen a system where the
dynamics are not bounded and there is explosive growth.

Deterministic means that there is a definite rule with no random terms
governing the dynamics. The finite-difference equation 1.12 is an example
of adeterministic system. For one-dimensional, finite-difference equations,
“deterministic” means that for each possible value of x,, there is only a single
possible value for x,.; = f(x:). In principal, for a deterministic system x,
can be used to calculate all future values of x;.

Sensitive dependence on initial conditions means that two points
that are initially close will drift apart as time proceeds. This is an essential
aspect of chaos. It means that we may be able to predict what happens for
short times, but that over long times prediction will be impossible since
we can never be certain of the exact value of the initial condition in any
realistic system. In contrast, for finite-difference equations with stable fixed
points or cycles, two slightly different initial conditions may often lead to
the same fixed point or cycle. (But this is not always the case; see Chapter
3.)

Although the possibility for chaos in dynamical systems was alfeady known
to the French mathematician Henri Poincaré in the nineteenth century, the con-
cept did not gain broad recognition amongst scientists until T.-Y. Li and J. Yorke
introduced the term “chaos” in 1975 in their analysis of the quadratic map,
Eq. 1.12. The search for chaotic dynamics in diverse physical and biological fields,
and the mathematical analysis of chaotic dynamics in nonlinear equations, have
sparked research in recent years.
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THE PERIOD-DOUBLING ROUTE TO CHAOS

We have seen that the simple finite-difference equation
Xep1 = R — x)x,

can display various qualitative types of behavior for different values of R: steady
states, periodic cycles of different lengths, and chaos. The change from one form
of qualitative behavior to another as a parameter is changed is called a bifurca-
tion. An important goal in studying nonlinear finite-difference equations is to
understand the bifurcations that can occur as a parameter is changed.

There are many different types of bifurcations. For example, in the linear
finite-difference equation x,.; = Rx,, thereis decaytozerowhen—1 < R < 1.
For R > 1,however, the behavior changes to exponential growth. The bifurcation
point, or the point at which a change in R causes the behavior to change, is
at R = 1. Nonlinear systems can show many other types of bifurcations. For
example, changing a parameter can cause a stable fixed point to become unstable
and can lead to a change of behavior from a steady state to a periodic cycle.

The finite-difference equation in Eq. 1.6 and many other nonlinear systems
displays a sequence of bifurcations in which the period of the oscillation doubles as
a parameter is changed slightly. This type of behavior is called a period-doubling
bifurcation.

We can derive an algebraic criterion for a period-doubling bifurcation. In
a nonlinear finite-difference equation there are n fixed points of the function

x=f(fC-- )
[ S

n times

that are associated with a period-n cycle. The slope at each of these fixed points
is the same. As a parameter is changed in the system, the slope at each of these
fixed points also changes. When the slope for some parameter value is equal to
—1, it is typical to find that at that parameter value the periodic cycle of period
n loses stability and a periodic cycle of period 2n gains stability. In other words,
there is a period-doubling bifurcation. Unfortunately, application of this algebraic
criterion can be very difficult in nonlinear equations since iteration of nonlinear
equations such as Eq. 1.6 can lead to complex algebraic expressions that are not
handled easily. Consequently, people have turned to numerical studies.

Using a programmable pocket calculator in a numerical investigation of
period-doubling bifurcations in Eq. 1.6 led Mitchell J. Feigenbaum to one of
the major discoveries in nonlinear dynamics. Feigenbaum observed that as the
parameter R varies in Eq. 1.6, there are successive doublings of the period of
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oscillation. Numerical estimation of the values of R at the successive bifurcations
lead to the following approximate values:

» For 3.0000 < R < 3.4495, there is a stable cycle of period 2.
» For3.4495 < R < 3.5441, there is a stable cycle of period 4.
» For3.5441 < R < 3.5644, there is a stable cycle of period 8.
» For3.5644 < R < 3.5688, there is a stable cycle of period 16.

» As R is increased closer to 3.570, there are stable cycles of period 2",
where the period of the cycles increases as 3.570 is approached.

a For values of R > 3.570, there are narrow ranges of periodic solutions
as well as aperiodic behavior.

These results illustrate a sequence of period-doubling bifurcationsat R = 3.0000,
R = 3.4495, R = 3.5441, R = 3.5644, with additional period-doubling bifur-
cationsas R increases. This transition from the stable periodic cycles to the chaotic
behavior at R = 3.570 is called the period-doubling route to chaos.

Notice that the range of values for each successive periodic cycle gets nar-
rower and narrower. Call A, the range of R values that give a period-n cycle.
For example, since 3.4495 < R < 3.5441 gives a period-4 cycle, we have
Ay = 3.5441 — 3.4495 = 0.0946. Similarly, Ag = 3.5644 — 3.5441 = 0.0203,

The ratio 2t is 2096 — 46601. By considering successive period

As 0.0203
doublings, Feigenbaum discovered that

A
lim — = 4.6692....

L aude ¢l 2n

The constant, 4.6692 . . . is now called Feigenbaum’s number. This number ap-
pears not only in the simple theoretical model that we have discussed here but
also in other theoretical models and in experimental systems in which thereis a
period-doubling route to chaos.

One way to represent graphically complex bifurcations in finite-difference
equations is to plot the asymptotic values of the variable as a function of a pa-
rameter that varies. This type of plot is called a bifurcation diagram. Figure 1.31
shows a bifurcation diagram of Eq. 1.6. This figure is constructed by scanning
many valuesof R intherange3 < R < 4.Foreachvalueof R, 1.6isiterated many
times. After allowing enough time for transients to decay, several of the values
Xrs X141, X142, and so on are plotted. For example, when R = 3.2, Eq. 1.6 ap-
proaches a cycle of period 2, so there are two values plotted. The period-doubling
bifurcations appear as “forks” in this diagram.

A summary of the dynamic behaviors discussed in Eq. 1.6 is contained in
Figure 1.32. As the parameter R changes, different behaviors are observed. If you
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Figure 1.31 A bifurcation diagram of Eq. 1.6. The asymptotic values of x, are
plotted as a function of R using the method described in the text.
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Figure1.32 The various types of qualitative dynamics seenin x,.; = Rx,(1 —x;)
for different values of the parameter R.
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understand the origin of each of these behaviors, you have mastered the material
in this chapter!

J Exampte 1.3

The following equation, called the tent map, is often used as a very simple
equation that gives chaotic dynamics.
Consider the finite-difference equation

Xyt = f(x), 0<x <1,

where f(x;) is given as

2x; for0 < x; <

o) = (1.13)

1
2—2x; for-z- <x <1

s

B =

Draw a graph of x4 as a function of x,. Graphically iterate this equation and
determine if the dynamics are chaotic.

Solution: The graph of this equation looks like an old-fashioned pup tent
(see Figure 1.33). Starting at two points chosen randomly near to each other we
find that both points lead to aperiodic dynamics, where the distance between
subsequent iterates of the points initially increases on subsequent iterations.
Therefore, this system gives chaotic dynamics. This problem is tricky, however,
since many people will start at a point such as 0.1, find that the subsequent iterates
are0.2,0.4,0.8,0.4,0.8, . . ., and then conclude that since they have found a cycle

Xt

Figure 1.33
0 X 1 The graph of Eq. 1.13.
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the dynamics in this equation are not chaotic. However, although there are many
other such cycles in this equation, “almost all” values between 0 and 1 give rise
to aperiodic chaotic dynamics. This is because the cycles are all unstable, as was
defined in Section 1.6. Most equations that display chaotic dynamics also exhibit
unstable cycles for some initial conditions, and thus this example is typical of
what is found in other circumstances.

If you use a computer to iterate this map, watch out! You will probably
find that the map rapidly converges to the fixed point at x; = 0, even though
this is an unstable fixed point. The reason involves the fact that numbers are
represented in computers in base 2—all of the numbers that a computer can
store in finite precision will be attracted to x, = 0. To eliminate this problem,
you can approximate the 2 in Eq. 1.13 by 1.9999999. O

1.8 QUASIPERIODICITY

In chaotic dynamics there is an aperiodic behavior in which two points
that are initially close will diverge over time. There is another type of aperiodic
behavior in which two points that are initially close will remain close over time.
This type of behavior is called quasiperiodicity. In quasiperiodic dynamics there
are no fixed points, cycles, or chaos.

To see how this type of dynamics can arise, consider the equation

X1 = f(x) =x +b (mod 1), (1.14)
where (mod 1) is the “modulus” operator that takes the fractional part of a num-
ber (e.g., 3.67 (mod 1) = 0.67). To iterate this equation, we calculate x, + b and
then take the fractional remainder. For example, if x; = 0.9 and the parameter

b = 0.3,thenx, +b = 1.2 and x; + b(mod 1) = 0.2. Now consider the second
iterate. We can do the iteration algebraically:

Xp2 =X+ b (modl) =(x,+5b (modl)+5b) (modl)
=x; +2b (modl).

In similar fashion, we can find that
Xipn = fH(x;) = x, +nb (mod 1).

Consequently, if nb(mod 1) = 0, then all values are on a cycle of period n;
otherwise no values will be.
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One way to think of this is by analogy to the odometer of a car, that shows
the total mileage driven. Imagine that the odometer has a decimal point in front
of it so that it shows a number between zero and one, for instance .07325. Every
day the car goes b miles. After reaching .99999 the odometer resets to zero. x; is
the odometer value at the end of the trip on day 7.

An example illustrates these ideas. In Figure 1.34 we showa graph ofEq. 1.14
for the particular case where b = 2. This graph shows that the function has no
fixed points, because there are no intersections of the function with the line
Xr41 = X;. The cobweb diagram for several iterations shows that there does not
appear to be a cycle but that nearby points stay close together under subsequent
iterations. Therefore, the dynamics appear to be quasiperiodic.

Can we know that there are never any periodic points no matter how many
iterations we take? Here’s where a bit of advanced mathematics can help. Recall
the definition of a rational number: A number that can be written as the ratio of
two integers g . Irrational numbers cannot be written as a ratio of two integers.
7 is an irrational number and % is therefore also an irrational number. It follows

immediately that = (mod 1) can never be equal to 0 for any integer n. Therefore,

there can never bezany periodic cycles for Eq. 1.14 with b = ;!1— . Also, from the
algebraic iteration, we see that the iterates of two initial conditions that are very
close will remain very close. Therefore, the dynamics are quasiperiodic.

Though the concept of quasiperiodicity depends on abstract concepts in
number theory, quasiperiodic dynamics can be observed in a large number of
different settings. Consider the following odd sleep habits exhibited by one of our
colleagues when he was in graduate school. The first day of graduate school the
graduate student fell asleep exactly at midnight. Each day thereafter, the graduate

student got up, worked, and went to sleep. However, this graduate student did

X1

0.8
0.6
0.4

0.2 Figure 1.34

Iteration of

Xip1 = X + ;l(mod 1). The
dynamics are an example of

quasiperiodicity.
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not do this at the regular rhythms but rather with a rhythm of abour 25 hours.
The graduate student came into work about an hour later each day. Eventually,
after 24 days, the graduate student goes to sleep again at about midnight. If
the student’s sleep cycle were exactly 25 hours, then there would be a cycle: 25
calendar days would equal 24 graduate student days exactly. However, it would
be very unlikely that the graduate student’s day would be exactly 25 hours. For
example, suppose the graduate student days were 25 + 0.0017 hours. Then,
using the same arguments above, the graduate student would never again go to
sleep exactly at midnight (independent of the length of time needed to complete
graduate school!).

Another area in which quasiperiodic dynamics are often observed is in car-
diology. There can be several different pacemakers in one heart. Normally one
is in charge and sets the rhythm of the entire heart by interactions with other
pacemakers (we will turn to this just ahead). However, in some pathological
circumstances, pacemakers carry on their own rhythm—they are not directly
coupled to each other. Typically one sees variable time intervals between the fir-
ing times of one pacemaker and the other. Cardiologists generally invent esoteric
names to describe reasonably simple dynamic phenomena and have classifica-
tion schemes for naming rhythms that are not based on nonlinear dynamics.
Thus, two different rhythms that can be considered as quasiperiodic (to a first
approximation) are parasystole and third-degree atrioventricular heart block. The
analysis of these cardiac arrhythmias leads naturally into problems in number
theory.

) Exampie 1.4

The finite-difference equation, sometimes called the sine map,

Xee1 = f(x:) = x; + bsin(2rx,),

where 0 < x, < 1, has been considered as a mathematical model for the in-
teraction of two nonlinear oscillators (Glass and Perez, 1982). See Dynamics in
Action 1 for a typical experiment.

This system displays period-doubling bifurcations as the parameter b is

varied.

a. Find the fixed points of this equation.

b. Algebraically determine the stability of all fixed pointsfor0 < b < 1.
‘What are the dynamics in the neighborhood of each fixed point?

35
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Figure1.35 (left) The graph of x,4; = x, + bsin(2nx;) for b = 0.4; (right) x4,
versus x,, showing the cycle of period 2 when b = 0.4.

Solution:

a. There are fixed points when

This will be true when b sin 27 x, = 0 which occurs whenx, = 0

Xt41 = Xy + bsin 2mrx;.

1
3 '2':1-

b. To evaluate the stability we must first determine the slope at the steady
states. The slope evaluated at the steady state is given by

dx
—* — 1 + 27b cos 2 x,.
dx;
Therefore, when x, = 0 or x; = 1, the slope at the steady state is

1 4+ 27wb > 1, which indicates that the steady state is unstable. For
X = % the slope at the steady stateis 1 — 27b. For0 < b < % this is
a stable steady state, which is approached in an oscillatory fashion; and
forb > ;lr- this is an unstable steady state, which is left in an oscillatory
fashion (see Figure 1.35). The slope is —1 atb = % , S0 this value of b
gives a period-doubling bifurcation.

O




