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Restricted Brachistochrone 
Leonid Minkin and Percy Whiting, Portland Community College, Portland, OR

The motion of a bead along a path restricted to straight 
lines (restricted brachistochrone), sliding without fric-
tion from rest and accelerated by gravity, is considered. 

For two shapes of path, the geometry of the route optimized 
to provide the least travel time from one point to another is 
obtained. The bead’s travel times, path lengths, and average 
velocities are compared between the two presented models, 
and with travel along a cycloid path, which (as the solution 
to the original brachistochrone problem) provides the lowest 
possible travel time. The calculations are made with and with-
out the use of calculus, and therefore the problems presented 
are comprehensible for a large variety of students.

Introduction
Problems of optimization in undergraduate physics curric-

ula are rare; and yet, these problems are usually intriguing and 
of great interest to students. One such fascinating question 
was formulated by Johann Bernoulli over 300 years ago in 
1696:

What is the shape of the curve down which a bead 
sliding from rest and accelerated by gravity will 
travel, without friction, from one fixed point to an-
other in the least time? 

One can also phrase this question in terms of designing 
the least-time roller coaster track between two given points. 
It is called the problem of brachistochrone (from the Greek 
for “shortest time”) curve.1-4 The solution of the problem was 
found by five of the great natural philosophers of the day: Ber-
noulli (Jakob —the brother of Johann), Leibniz, de L’hôpital, 
von Tschirnhaus, and Newton. The well-known solution is 
an inverted cycloid. However, the solution of this problem is 
rather complicated for first-year students and is not offered in 
introductory physics curricula.

A simplified brachistochrone problem that is suitable for 
an introductory undergraduate course has been presented 
elsewhere.5,6 In this paper two additional cases are presented: 
a bead moving in a uniform gravitational field along vertical 
and horizontal wires that form a -shaped path, and along 
a V-shaped path. It is assumed that the bead’s sliding is purely 
frictionless translation, and that initial and final gravitational 
energies of the bead are equal.

Two examples of restricted brachisto-
chrone problems

Imagine a bead with a wire threaded through a hole in it, 
so that the bead can slide with no friction along the wire. The 
bead is released from point A and slides down along a vertical 
frictionless wire of length h.Then it moves along a horizontal 
line CD = L, after which it moves up to point B, which is at 
the same horizontal level as point A (Fig. 1). Of course, the 
bead would struggle to turn the corners, so smoothing off the 
corners would be necessary to prevent a collision between the 

bead and wire that 
would cause me-
chanical energy loss. 
The question is from 
what height AC = h 
a frictionless bead 
should fall, when 
traveling between 
points A and B, in 
order to minimize 
its time of travel if 
gravity alone is the 
cause of acceleration. 
This question is not 
trivial, because there 
are two competing 
results of increasing 
h: the first is that the 
greater h requires 
greater distance and 
time traveled ver-
tically by the bead, 
but, compensating 
for that, the greater h also brings about a greater speed and 
less time for traveling along the horizontal segment of the 
path. So, to minimize travel time, h is the variable whose opti-
mal value needs to be found.

Let us consider the motion of a bead along path ACDB. On 
the vertical paths AC and DB, the object moves with acceler-
ation g due to gravity. As initial and final speeds are equal to 
zero, the travel time t1 along paths AC and DB is7

                                 (1)  
 

Here h = AC = DB. The speed at point C is7

              
(2)

Along path CD the bead moves with constant speed v and 
therefore the travel time for path CD = L 

              
(3)

By substitution from Eqs. (1)-(3), the total travel time of t = 
2t1 + t2 becomes

 
                                 (4)

 
giving t as a function of h. One can see that this function has 
an extreme point h = hopt for which time is minimum (tmin). 
Taking the derivative of t with respect to h, and equating it to 
zero,

Fig. 1. Restricted frictionless motion of 
the bead along a -shaped wire from 
point A to the given end point B under 
the influence of a uniform gravitational 
field (CD = L).
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Fig. 2. A bead, released at point A, trav-
els to point B along frictionless paths 
AEB or AE1B (AE = EB, AB = L).
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yields optimal height  optimal travel distance AC + 
CD + DB = 2hopt + L = 1.5L, and the minimum travel time: 

This problem can be modified by considering a V-shaped 
path. Let a bead be released from point A and move to point 
B along symmetrical frictionless linear paths AE and EB (AE 
= EB) (Fig. 2). The question is for what AEF (or h = EF) the 
travel time is minimum. Let AB = L, and follow the procedure 
described above. Since the initial bead speed equals zero, its 
speed at point E is  and its travel time from A to E 
is    where a = gcos(AEF) is the bead’s acceleration. 
Then the total travel time along path AEB is

                             (5)
 

Taking the derivative and equating it to zero allows us to find 
optimal h and AEF:

    and  AEFopt = 45o,
which implies minimum travel time of  
      Now let us compare the travel time along the paths AEB 
and AE1B (these two triangles have the same height h). Av-
erage speeds along paths AE, EB, AE1, and E1B are the same, 
and are equal to 

av

and therefore the travel time along AEB and AE1B paths are 

av av

 respectively. But as AE + EB < AE1
 + E1B,8 the travel time 

along path AEB is less than for path AE1B. That proves that 
AEB is the optimal path, i.e., the path that requires the least 
travel time from point A to point B along two straight lines.

As expected, travel time vs. height has a minimum for both 
basic shapes of path discussed (Fig. 3), while the distances 
traveled along the two particular optimized shapes are differ-
ent (Fig. 4).  It should also be mentioned that for the two basic 
shapes, the minimal travel times are identical (Fig. 3). 

Algebraic solution for minimum travel time
It is possible to find the least travel time and optimal height 

for the two considered restricted brachistochrone cases with-
out using calculus. To find extreme points and extreme values 
of the functions defined by Eqs. (4) and (5), an approach simi-
lar to that used elsewhere6, 9-11 is employed.

1. Traveling along a -shaped path 
Equation (4) can be written in the form where 

The last equation can be written as ax2– tx + b = 0. Since x is 
a positive real number, the determinant of this equation must 
be positive t2 –4ab ≥ 0 and and

2. Traveling along a V-shaped path 
Squaring both sides of Eq. (5) leads to quadratic equation 

8h2– gt2 h + 2L2 = 0.  Since h must be a real positive number, 
g2t4 ≥ 64L2.  That means that

                                                      
and

 
Comparison of a brachistochrone-cycloid 
and brachistochrones confined by straight 
lines 
     It was found in the 17th century that a cycloid is the 
curve on which a bead slides under the influence of a uni-
form gravitational field to a given end point in the shortest 
time. A cycloid is the curve traced by a point on the rim of a 
circular wheel of radius r as the wheel rolls along a straight 
line without slipping (Fig. 5). For one revolution of the 
wheel1 AB = L =2πr, the length of the ACB arc is

 and the travel time
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Fig. 3. Travel time as a function of h for a -shaped 
(dash line) and V-shaped (solid line) tracks with L = 0.50 
m. The minimal time 

                                     
is identical for the two cases.

F

E

C

A B

D

Fig. 4. Optimal profiles for -shaped (ACDB) and V-shaped 
(AEB) tracks (AB = L, AC = L/4, EF = L/2, AE = EB, AC + CD + BD 
= D1 = 1.5 L, AE + EB = D2 = √2 L).
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As expected, tcycl < tmin for the two restricted cases, and 

8

One also can see that D < D2 < D1. 
     The average speed along a cycloid path 

while along a -shaped path the average speed 

 and along a V-shaped path 

Although v 
_
 ≈  v

_
2 ≈ v

_
1, tcycl < tmin = 1.1tcycl because D < D2 = 

1.1D < D1 = 1.2D.

Conclusion 
The brachistochrone problem has historical significance, 

as its solution contributed to the creation of the calculus of 
variations,2,3 on which Lagrangian mechanics is based. Al-
though the problems presented here seek the minimum value 
for time of motion of an object along a specified simple con-
figuration of linear piecewise continuous lines, it gives some 
initial idea of the calculus of variations. These extremum 
problems can also be solved without calculus and therefore 
are suitable for a large range of students, and, as practically all 
optimization problems do, these problems usually pique stu-
dents’ curiosity and stimulate their interest in physics.
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Fig. 5. The inverted cycloid curve.

• Measure NMR/ESR Line width
• Determine g factor
• Study line shape
• Determine Earth’s 
   magnetic field

(800) 622-2866        telatomic.com/CWS

CW NMR from 
TEL-Atomic

 04 April 2024 15:27:03


