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The precession of the perihelion of Mercury’s orbit is calculated using the Laplace–Runge–Lenz
vector. An approximate calculation that assumes the orbits of the perturbing planets are circular and
coplanar with Mercury’s orbit is within 4.4% of the correct value. A complete calculation that uses
the correct elliptical orbit and orientation for each of the perturbing planets is then presented. The
precession due to a perturbing planet is proportional to the mass of the planet and is approximately
inversely proportional to the cube of its semimajor axis. © 2005 American Association of Physics Teachers.
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I. INTRODUCTION

Most classical mechanics textbooks mention that the pre-
cession of the perihelion of Mercury’s orbit was one of the
first tests of Einstein’s general theory of relativity. The peri-
helion precesses about 575 s of arc per century �in a sun
fixed coordinate system� of which 532 seconds of arc can be
explained by the perturbations of Mercury’s orbit by the
other planets. From the mid-nineteenth century through the
early twentieth century several workers calculated these
perturbations.1 The cause of the remaining 43 seconds of arc
per century was not understood until the general theory of
relativity was developed. Several texts calculate the relativ-
istic contribution,2,3 but none �to my knowledge� indicate
how to calculate the precession due to the other planets. This
problem was recognized by Price and Rush,4 who calculated
the precession using circular, coplanar orbits for the perturb-
ing planets and approximated the perturbing force.

With the prevalence of computers, we revisit this problem
and reexamine the Price and Rush calculation, utilizing the
Laplace–Runge–Lenz vector �also see Ref. 5�. We then do
the calculation for perturbing orbits that are elliptical and
inclined with respect to Mercury’s orbit. The relativistic con-
tribution also is calculated.

II. THE LAPLACE–RUNGE–LENZ VECTOR

For a Kepler orbit the Laplace–Runge–Lenz vector is de-
fined as6

A = p Ã L − �k
r

r
, �2.1�

where p and L are the linear and angular momentum vectors,
respectively, and �=mM / �M +m� is the reduced mass. For
planetary motion, m is the mass of the planet, M is the mass
of the sun, k=GMm, G is the gravitational constant, and r is
the radius vector from the origin to the planet. For Mercury,
m /�=1+ �1.7�10−7� �see Table I�, and, thus, m can be used
instead of � in the following calculations without affecting
the final results.

The vector A lies in the plane of the elliptical orbit, is
parallel to the major axis, and points in the direction of the
perihelion. Its magnitude is �ke, where e is the eccentricity
of the orbit. If there are no perturbing forces, A is conserved,
and the major axis of the orbit is fixed in space. However, if
there are perturbing forces, then A is not constant, and, in
general, the perihelion will precess. If the perturbing force is
F, the time derivative of A is given by7

Ȧ

�
= 2�ṙ · F�r − �r · ṙ�F − �r · F�ṙ , �2.2�

and the angular velocity of the Laplace–Runge–Lenz vector
is

� =
A Ã Ȧ

A2 = â Ã
Ȧ

A
, �2.3�

where â is the unit vector in the direction of A.

III. CIRCULAR, COPLANAR ORBITS

If the orbit of the perturbing planet is assumed to be cir-
cular and coplanar with Mercury’s orbit, then from symmetry
considerations, the perturbing force will have only a radial
component. If we substitute F=Frr̂ and ṙ= ṙr̂+r�̇�̂ into Eq.
�2.2�, where the true anomaly � is the angle between the line
from the origin to the perihelion and r, we find

Ȧ = − mr2Fr�̇�̂ . �3.1�

The substitution of Eq. �3.1� into Eq. �2.3� gives

� = −
r2Fr�̇

ke
�â � �̂� = −

r2Fr�̇

ke
cos �ẑ�. �3.2�

Instead of using a point mass for a perturbing planet, we
will replace it by a uniform ring of radius aP �equal to the
semimajor axis of the planet’s elliptical orbit� and mass MP,
and will calculate the force on Mercury from this mass ring.
The gravitational potential of a mass ring at a point that is a
distance r from the origin and in the plane of the ring is7

��r� =
2GMP

�aP
K��� , �3.3�

where K��� is the complete elliptic integral of the first kind
and �=r /aP. The gravitational force on a mass m that lies in
the plane of the ring is

Fr = m
��

�r
=

2GmMP

�aP
2

1

�
� E���

1 − �2 − K���� , �3.4�

where E��� is the complete elliptic integral of the second
kind.

Because A points in the direction of the perihelion, the
contribution to the precession of the perihelion of Mercury’s
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orbit, �� due to the perturbing planet P, can be found by
calculating the angle of rotation of A for one revolution of
Mercury,

�� = �
0

�

	dt

= −
2MP

�eaPM
�

0

2�

r� E���
1 − �2 − K����cos � d� . �3.5�

The magnitude of the radius vector from the origin to Mer-
cury is

r =
a�1 − e2�

1 + e cos �
,

where a is the semimajor axis, and e is the eccentricity of the
orbit of Mercury.

The values8 of M /MP and aP �in astronomical units�9 for
the planets are listed in Table I, along with each planet’s
contribution to the precession in seconds of arc per century
as calculated from Eq. �3.5�10 using numerical integration.
The values of e are listed in Table II. For comparison, the
values calculated by Doolittle,11 corrected for current mass
values, also are listed.

The approximation of circular, coplanar orbits for the
seven perturbing planets gives a result for the precession of

Mercury’s perihelion due to these planets that is 4.4% too
large. In Sec. IV we extend the above methods to compute
the perihelion precession for elliptical and inclined orbits.

IV. ELLIPTICAL AND INCLINED ORBITS

If the perturbing planet’s orbit is elliptical and inclined
with respect to Mercury’s orbit, we have the geometry de-
picted in Fig. 1; the perturbing planet’s orbit lies in the xy
plane, and Mercury’s orbit lies in the x�y� plane. The angle

 is measured from the perihelion of the perturbing planet’s
orbit, �P, to the ascending node of Mercury’s orbit.12 The
mutual inclination of the two orbits is i, and 	 is the angle
measured from the ascending node to Mercury’s perihelion,
�M.13 These three angles are the three Euler angles which
specify the rotation of the axes from �x ,y ,z� to �x� ,y� ,z��.14

To find the gravitational potential at r, we replace a per-
turbing planet by an elliptical ring of mass MP that coincides
with its orbit. Doolittle has shown that this replacement gives
the same results as those derived from the moving planet.15

However, because a planet does not move with constant
speed, the mass element dMP is proportional to the time the
planet spends in the line element ds. The gravitational poten-
tial of this elliptical ring at r is7

Table I. The ratio of the sun’s mass to the planet’s mass, the semimajor axis ap, and the contribution to the
precession of the perihelion of Mercury are given for each planet.

Planet M /MP aP �AU�
�� �arcsec/century�

from Eq. �3.5�
�� �arcsec/century�

from Eq. �4.14�
Doolittlea

�arcsec/cent.�

Mercury 6 023 600 0.387 098 93 ¯ ¯ ¯

Venus 408 523.5 0.723 331 99 292.84 277.42 277.37
Earth+Moon 328 900.55 1.000 000 11 95.89 90.88 90.92
Mars 3 098 710 1.523 662 31 2.38 2.48 2.48
Jupiter 1 047.350 5.203 363 01 156.94 153.95 154.09
Saturn 3 498.0 9.537 070 32 7.57 7.32 7.32
Uranus 22 960 19.191 263 93 0.14 0.14 0.14
Neptune 19 314 30.068 963 48 0.04 0.04 0.04
Total 555.80 532.23 532.36

aReference 1, p. 179, but corrected for current values of M /MP.

Table II. The orbital parameters for the planets. Columns 2–7 are in degrees. The quantities 
P, iP, and 	P are
the longitude of the ascending node, the inclination, and the argument of the perihelion, respectively, for each
planet measured with respect to the ecliptic �Ref. 9�. The quantities 
, i, and 	 are the orbital parameters for
Mercury measured with respect to the plane of the perturbing planet’s orbit. �See Fig. 1.� The angle 
 is
measured from the perihelion of the perturbing planet’s orbit to the ascending node of Mercury’s orbit. The
angle i is the mutual inclination of the two orbits, and the angle 	 is measured from the ascending node to
Mercury’s perihelion. Column 8 lists the eccentricities of the planetary orbits �Ref. 9�.

Planet 
P iP 	P 
 i 	 e

Mercury 48.331 67 7.004 87 29.124 87 ¯ ¯ ¯ 0.205 630 69
Venus 76.680 69 3.394 71 54.846 08 255.023 19 4.327 27 51.004 69 0.006 773 23
Earth+
Moon

−11.260 64 0.000 05 114.207 83 305.384 06 7.004 96 29.124 87 0.016 710 22

Mars 49.578 54 1.850 61 286.462 30 71.844 12 5.154 97 29.573 62 0.093 412 33
Jupiter 100.556 15 1.305 30 274.197 70 24.181 27 6.290 18 38.584 12 0.048 392 66
Saturn 113.715 04 2.484 46 338.716 90 −64.730 81 6.381 11 49.893 18 0.054 150 60
Uranus 74.229 88 0.769 86 96.734 36 234.331 83 6.321 35 32.180 62 0.047 167 71
Neptune 131.721 69 1.769 17 273.249 66 4.558 53 7.023 65 43.650 17 0.008 585 87
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��r� =
GMP

2�aP
2�1 − eP

2�
0

2� rP
2 d�

�r2 + rP
2 − 2rrP sin � cos�
 − ��

,

�4.1�

where rP=aP�1−eP
2 � / �1+eP cos ��.

If we use spherical polar coordinates �r ,� ,�� in the
primed coordinate system, the gravitational force on m due
to the elliptical mass ring is F=Frr̂+F��̂+F��̂, and because

the precession of the perihelion occurs in the plane of the
orbit, we have ṙ= ṙr̂+ �̇�̂. If we substitute for F and ṙ in Eq.
�2.3�, we obtain

� = â Ã
Ȧ

A
=

1

ke
�2r2Fr�â � r̂��̇ − rṙF��â � �̂�

− �rṙF� + r2Fr�̇��â � �̂�� , �4.2�

where â� r̂=sin �ẑ�, â��̂= ŷ�, and â��̂=cos �ẑ�.
The term â��̂ gives rise to rotation about the y� axis and

does not contribute to the precession of the perihelion.16 If
we substitute for â� r̂, â��̂, and

ṙ =
r2e sin �

a�1 − e2�
�̇ ,

we have

� =
1

ke
�− r2 cos �Fr + r2 sin �	2 + e cos �

1 + e cos �

F���̇ẑ�,

�4.3�

where

Fr = m
��

�r
, F� =

m

r

��

��
=

m

r
	 ��

��

��

��
+

��

�


�


��

 .

To express � in terms of the variable � we write

cos � = r̂ · ẑ = cos ��x̂� · ẑ� + sin ��ŷ� · ẑ� . �4.4�

The relation between the primed and the unprimed coordi-
nates is x�=Tx, where the matrix T is17

T = � cos 	 cos 
 − cos i sin 
 sin 	 cos 	 sin 
 + cos i cos 
 sin 	 sin 	 sin i

− sin 	 cos 
 − cos i sin 
 cos 	 − sin 	 sin 
 + cos i cos 
 cos 	 cos 	 sin i

sin i sin 
 − sin i cos 
 cos i
� . �4.5�

Then

cos � = cos � sin 	 sin i + sin � cos 	 sin i

= sin i sin�	 + �� . �4.6�

If we differentiate cos � with respect to � and solve for
�� /��, we find

��

��
= −

sin i cos�	 + ��
sin �

. �4.7�

To find the relation between 
 and � we have

cos�	 + �� = r̂ · n̂ , �4.8�

where n̂ is the unit vector pointing to the ascending node.
Then

cos�	 + �� = �sin � cos 
x̂ + sin � sin 
ŷ

+ cos �ẑ� · �cos 
x̂ + sin 
ŷ�

= sin � cos�
 − 
� . �4.9�

Thus

cos�
 − 
� =
cos�	 + ��

sin �
. �4.10�

We then have

sin�
 − 
� =
cos i sin�	 + ��

sin �
, �4.11�

and

tan�
 − 
� = cos i tan�	 + �� . �4.12�

If we differentiate tan�
−
� with respect to � and solve for
�
 /��, we obtain

�


��
=

cos i

sin2 �
. �4.13�

The precession, in radians per revolution, is given by in-
tegrating Eq. �4.3� over one revolution. We substitute for
�� /�r, �� /��, �� /�
, which are obtained by differentiating
Eq. �4.1�, �� /�� from Eq. �4.7� and �
 /�� from Eq. �4.13�,
and write the precession as

Fig. 1. The orbits of Mercury and the perturbing planet.
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�� = �
0

�

	dt = −
1

2�

MP

M

1

aP
2�1 − eP

2

1

e
�

0

2�

r2�
0

2� rP
3

�r2 + rP
2 − 2rrP sin � cos�
 − ���3/2 · 
cos ��sin � cos�
 − �� −

r

rP
�

+
sin �

sin �
	2 + e cos �

1 + e cos �



��sin2 i sin�	 + ��cos�	 + ��
cos�
 − �� + cos i sin�
 − �� ��d�d� , �4.14�

where

r =
a�1 − e2�

1 + e cos �
, rP =

aP�1 − eP
2 �

1 + eP cos �
,

cos � = sin i sin�	 + ��,

cos 
 =
cos 
 cos�	 + �� − sin 
 cos i sin�	 + ��

sin �
.

The constants 
, i, and 	 �actually 
+	� are given in
astronomical tables for planetary orbits with respect to the
ecliptic, but in Eq. �4.14� these quantities must be specified
for Mercury’s orbit with respect to the perturbing planet’s
orbit. In the Appendix the appropriate formulas are derived
for determining these quantities as defined in Fig. 1. In Table
II the quantities 
, i, and 	, for each planet are given with
respect to the ecliptic9 and are denoted by the subscript P.
The same quantities are given for Mercury with respect to
the perturbing planet’s orbit as calculated from Eqs. �A3�,
�A1�, and �A2�, respectively, and are used to evaluate Eq.
�4.14�.

Each planet’s contribution to the precession of the perihe-
lion of Mercury’s orbit, in seconds of arc per century, calcu-
lated from Eq. �4.14� using the orbital parameters listed in
Table II is listed in column 5 of Table I. The small differ-
ences in the precession calculated from Eq. �4.14� compared
to Doolittle’s calculations are due mainly to small differences
in the orbital parameters used in the two calculations.

The magnitude of the tangential force, F�, on Mercury is
always less than 3% of the radial force, Fr, on Mercury due
to all the planets �see Fig. 2�.

The fact that the radial force is dominant, that the eccen-
tricities of the orbits of the perturbing planets are small, and
that the inclinations of the perturbing planets’ orbits with
respect to Mercury’s orbit are small, explains why the calcu-
lation of Sec. III for circular, coplanar orbits gives a result
that is only 4.4% in error.

Equations �3.5� and �4.14� show that the precession is pro-
portional to the mass of the perturbing planet, and, as can be
seen in Fig. 3, the precession per unit mass is approximately
inversely proportional to the cube of the semimajor axis of
the perturbing planet’s orbit. This inverse cubic relationship
also can be seen by inspection of Eqs. �3.5� and �4.14�. If the
elliptic integrals in Eq. �3.5� are expanded in series form in
terms of the parameter �a /aP�, the leading term of �� is
proportional to �a /aP�3. The higher order terms cannot be
neglected, of course, if �a /aP� is not small compared to one.
A least-squares fit to the data in Fig. 3 gives a slope equal to
−3.1.

V. RELATIVISTIC CONTRIBUTION

The general relativistic force correction to the Newtonian
central gravitational force is18

Fgr = −
3GML2

mc2r4 r̂ , �5.1�

where c is the speed of light. Because there is only a radial
component, we can substitute for Fr in Eq. �3.2�, which gives

Fig. 2. Ratio of the tangential force to the radial force on Mercury due to
Venus, Earth, Mars, and Jupiter as a function of gamma.

Fig. 3. Precession of Mercury’s orbit divided by the mass of the perturbing
planet vs the semimajor axis of the perturbing planet. The precession/mass is
approximately proportional to the inverse cube of the perturbing planet’s
semimajor axis.
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�gr =
GML2

mkec2r2 �̇ cos �ẑ�. �5.2�

If we substitute mka�1−e2� for L2 in Eq. �5.2� and integrate
	gr for one revolution of Mercury’s orbit, the precession due
to the relativistic force is

��gr = �
0

�

	grdt

=
3GM

ec2a�1 − e2��0

2�

�1 + e cos ��2 cos � d�

=
6�GM

c2a�1 − e2�

= 5.0191 � 10−7 rad/revolution

= 42.98 seconds of arc/century. �5.3�

As noted in Sec. I, this 43 seconds of arc/century was the
missing contribution that completed the explanation of the
precession of the perihelion of Mercury’s orbit.
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APPENDIX: CALCULATION OF �, i, AND �

In astronomical publications the longitude of the ascend-
ing node, 
, the inclination, i, and the argument of the peri-
helion, 	, are given with respect to the ecliptic, and 
 is
measured from the vernal equinox. In Eq. �4.14� these quan-
tities refer to the plane of the perturbing planet’s orbit, and 

is the angle measured from the perihelion of the perturbing
planet to the ascending node. In Fig. 4 the orbital parameters
with respect to the ecliptic are shown with subscripts. The
subscripts M and P refer to Mercury and the perturbing

planet, respectively. The point �M is the perihelion of Mer-
cury’s orbit, and the point �P lies on the line from the origin
to the perturbing planet’s perihelion.

From spherical trigonometry the cosine of the mutual in-
clination is

cos i = cos iM cos iP + sin iM sin iP cos�
P − 
M� . �A1�

The angle from the ascending node to Mercury’s perihelion,
�M, is 	=A+	M, where

sin A =
sin iP

sin i
sin�
P − 
M� . �A2�

The angle from the perturbing planet’s perihelion, �P, to the
ascending node is 
=2�−B−	P, where

sin B =
sin iM

sin i
sin�
P − 
M� . �A3�
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